Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Решение задач в начальной школе

Читайте также:
  1. I. Предмет и задачи кризисной психологии
  2. I. Цели и задачи музейной практики
  3. I. Цели и задачи учебной дисциплины
  4. I. Цель и задачи производственной
  5. II. СИТУАЦИОННЫЕ ЗАДАЧИ
  6. II. Цель, задачи и основные направления деятельности Центра
  7. III Задачи прокурорского надзора

Прием моделирования при обучении решению задач

Подготовительным этапом по формированию у ребенка уме­ния моделировать ситуацию задачи, а затем описывать ее с по­мощью математических символов является обучение ученика выполнению действий с предметными совокупностями таким образом, чтобы его действия соответствовали смыслу ситуации, предлагаемой условием задачи. То есть самым простым спосо­бом моделирования задачи является моделирование на нагляд­ных предметах. Этим способом учитель может пользоваться на начальных этапах обучения решению задач, поскольку в этот период особенно важно правильное понимание детьми смысла действия, а смысл действия удобнее всего проиллюстрировать наглядно. Такое моделирование является доступным практически всем детям, и они с удовольствием пользуются им само­стоятельно. Если при использовании этого приема исключается возможность пересчета, такая работа является первым шагом на пути обучения ребенка общему умению решать задачи.

Использование схем при обучении решению задач.

Рассмотрим задачу: «В классе было 10 мальчиков, а в этом году пришли новые мальчики, и всего стало 12 мальчиков. Сколько новых мальчиков пришли в класс в этом году?»

В вопросе задачи отсутствует указание на выбор действия, а слова «припали», «всего стало» часто ассоциируются у детей с увеличением, поэтому они могут предложить решить ее так: 10+ 12 = 22.

Чтобы предупредить эту ошибку, составление схемы нуж­но начинать одновременно с разбором текста:

Учитель. Сколько мальчиков было в классе? (Десять.)-Обозначим число этих детей. (Ученик ставит карточку с чис­лом 10.)

— Сколько новых мальчиков пришли? (Этого мы не знаем.)

— Каким символом обозначим на схеме число новых маль­чиков? (Ученик ставит карточку со знаком вопроса.)

— Сколько мальчиков стало в классе? (Двенадцать.) Обо­значим это количество на схеме.

Ученик ставит карточку с числом 12 ниже первых двух. Схема приобретает вид:

 

Затем учитель просит ученика показать на схеме, сколько мальчиков стало в классе и как обозначены новые дети. Уче­ник показывает на соответствующие карточки с числами и сим­волом (движение руки ученика от цифры 12 к вопросу: этим движением он как бы предваряет направление стрелки, и это движение рука уже будет «помнить»).

— Как показать с помощью стрелки, что из всех мальчиков в классе нам нужны только те мальчики, которые вновь при­шли? (Ученик ставит стрелку.)

Как показать с помощью стрелки, что количество маль­чиков, которые раньше были в классе, уже известно и их учи­тывать не нужно? (Ученик ставит стрелку.)

— Если мы знаем, сколько мальчиков в классе теперь и сколько их было раньше, можно ли узнать, сколько их пришло вновь? (Да, можно. Надо отнять.)

На фланелеграфе крепится знак действия и записывается решение:

12-10 = 2(м.).

Фактически последний вопрос дублирует схему, которая является планом решения, но вопрос полезен, т. к. приучает Детей к грамотному построению вопроса «от данных».

Если учитель планирует самостоятельное решение задачи По схеме, то после ее составления учащимся предлагается за­писать решение в тетради. При этом учитель не задает вопроса, Наводящего на выбор действия, а учащиеся руководствуются только схемой. Пояснение выбора действия проводится уча­щимися после записи решения.

Использование схем при обучении решению составных задач

Рассмотрим возможность использования схем при знаком­стве с составной задачей и обучении решению составных задач на сложение и вычитание.

Использование схематического моделирования позволяет построить процесс знакомства с составной задачей на основе ча­стично-поискового метода: при таком подходе после решения простой задачи достаточно задать еще один вопрос, и схема при­обретает новый вид, моделируя ситуацию составной задачи.

Рассмотрим этот прием на примере следующей задачи: «Саша нашел 7 грибов, а Петя — на 2 гриба больше. Сколько грибов у Пети?» Составляется схема и записывается решение:

Учитель.А если Саша и Петя на обратном пути сложили все грибы в одну большую корзину, можно узнать, сколько в ней оказалось грибов? (Да, можно, если узнать, сколько грибов положил туда Петя и сколько — Саша.)

Давайте обозначим эту корзину на схеме.

Можем ли мы сразу ответить, сколько в ней грибов? (Нет.)

— Обозначим ее символом (

- Покажите, какие грибы положили в нее дети.

Ученик у доски движением руки показывает, какие грибы положены в корзину, и вслед за движением руки рисует стрел­ки. Схема приобретает вид:

на 2 больше

Вторая часть схемы определяет сложение, значит, можно поставить знак «+».

Схематический рисунок такого вида ученики легко перево­дят в символическую запись решения. При желании на схеме можно проставить порядок действий:

на 2 больше

В таком виде схема играет роль плана решения. После того, как найден ответ на второй вопрос, учитель обращает внима­ние детей на тот факт, что до сих пор они таких задач еще не решали. Вводится понятие составной задачи как задачи, для решения которой требуется выполнить больше одного действия.

Использование приема моделирования простой задачи с помощью схемы снимает необходимость готовить ученика к решению составных задач как к чему-то новому. Обученный прежде всего обращать внимание на данные и искомое, на ха­рактер и структуру связей между ними, ученик переносит это Умение на процесс решения составной задачи. Разница для него

заключается только в том, что данных стало больше и характер связей стал более разнообразным.

Уже на первых уроках знакомства с составной задачей де­тям можно предлагать схемы составных задач, помогая соста­вить по ним задачи и их решить.

Например:

Практика показывает, что дети уже на первых уроках зна­комства со схемами составных задач легко «читают» такие схемы, составляют по ним задачи и решают их, записывая при этом решения в виде выражения там, где это соответствует структуре схемы (схемы первая и вторая выше).

Далее при обучении решению составных задач учитель ори­ентируется на те же этапы, что и в работе с простой задачей. Умения, сформированные у детей при решении простых задач, получают дальнейшее развитие, становятся более совершен­ными. Приемы работы с моделью, используемые на каждом этапе работы с задачей, носят более разнообразный и сложный характер.

Рассмотрим задачу: «В автобусе ехали 10 человек. На пер­вой остановке в автобус вошли 9 человек, на второй вошел еще 1 человек. Сколько человек стало в автобусе?»

В связи с тем, что при решении составной задачи может быть использована новая форма записи ее решения — в виде математического выражения, при разборе этой задачи может быть использован следующий методический прием.

После чтения задачи и разбора ее текста учитель предлага­ет детям рассмотреть готовые схемы на доске и выбрать ту, | которая подходит к данной задаче:

 

При анализе выбранных схем (1) и (3) учитель обращает внимание учащихся на то, что схема (1) отражает последова­тельность событий: 9 человек вошли на первой остановке, 1 человек — на второй остановке. Но поскольку все они в конеч­ном счете едут в одном автобусе и в задаче спрашивается «сколь­ко человек стало в автобусе?», то и схема (3) также отражает структуру этой ситуации.

При выборе схем учитель показывает детям две формы записи решения:

и предлагает определить, какая из форм записи подходит к схеме (3), а какая — к схеме (1). Схема (3) определяет форму записи математическим выражением, схема (1) — по действиям. Такие упражнения на установление связей между структурой схемы и формой записи решения способствуют формированию аналитических способностей: ученик в состоянии проанализировать структуру схемы и соотнести ее со структурой записи решения. Здесь же можно обсудить вопрос о том, какая из схем и, соответственно, какой из приемов записи решения задачи имеют более экономную компактную форму.


Дата добавления: 2015-07-26; просмотров: 175 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
САЛАТ "ЦЕЗАРЬ" С КУРИЦЕЙ.| Рисование конуса

mybiblioteka.su - 2015-2024 год. (0.007 сек.)