Читайте также: |
|
Кнопка РАСЧЕТ — вычисление параметра , при котором возможно преобразование;
Кнопка ПОСТРОИТЬ ГРАФИК ФУНКЦИИ — график поляризационной характеристики при заданных параметрах;
Поле Начальный угол поляризации — значение ;
Поле Начальный сдвиг фаз между TE и TM — значение ;
Поле Наведенный сдвиг фаз после первой ячейки — значение ;
Поле Наведенный сдвиг фаз после третьей ячейки — значение ;
Поле Угол поляризации на выходе — значение ;
Поле Значение сдвига фаз на выходе — значение .
В поля группы «Границы интервала» вводятся значения левого и правого концов интервала смены знака поляризационной функции.
Переключатель «Тип вращателя» позволяет выбрать режимы линейного и произвольного вращения.
Список «Тип преобразования» позволяет выбрать одну из следующих схем преобразования: TE®TM, TM®TE, ПКП®TE, ЛКП®TE, ПКП®TM, ЛКП®TM, ПКП®ЛКП, ЛКП®ПКП, TE®ПКП, TE®ЛКП, TM®ПКП, TM®ЛКП.
КОНТРОЛЬНЫЕ ВОПРОСЫ
1. Эффект Керра.
2. Эффект Поккельса.
3. Тензор показателей преломления.
4. Устройство и принцип работы фазового модулятора емкостного типа.
5. Устройство и принцип работы фазового модулятора бегущей волны.
6. Виды поляризации электромагнитных волн.
7. Устройство и принцип работы TEÛTM-преобразователя.
8. Устройство и принцип работы интегрально-оптического преобразователя поляризации.
ЛИТЕРАТУРА
1. Интегральная оптика / Под ред. Тамира Т. — М.: Мир, 1978.
2. Клэр Ж.-Ж. Введение в интегральную оптику. — М.: Сов. Радио, 1980.
3. Свечников Г.С. Интегральная оптика. — Киев: Наукова думка, 1988.
4. Хансперджер Р. Интегральная оптика. Теория и технология. — М.: Мир, 1985.
ЛАБОРАТОРНАЯ РАБОТА №5
Электродинамический анализ собственных волн
оптических волноводов
ЦЕЛЬ РАБОТЫ: получение навыков расчёта дисперсионных характеристик плоских трёхслойных оптических волноводов при помощи программы MathCad.
ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ
1. Плоский трехслойный волновод с постоянной величиной
показателя преломления световедущей пленки
В предлагаемой лабораторной работе производится электродинамический анализ плоского трехслойного диэлектрического оптического волновода (световод показан на рисунке 1).
Рисунок 1
Рассматриваемая структура состоит из трех диэлектрических слоев: волноведущей пленки с показателем преломления , покровного слоя () и подложки ().
Рассмотрим электродинамическую теорию плоского трехслойного оптического волновода, базирующуюся на использовании уравнений Максвелла.
Обозначим через относительные диэлектрические и магнитные проницаемости подложки, световедущей пленки и покровного слоя, соответственно. Будем решать задачу при следующих допущениях:
1. Показатель преломления световедущей пленки является постоянным и не зависит от поперечной координаты .
2. Будем считать, что волноведущая структура является неограниченной вдоль оси .
3. Будем считать, что составляющие векторов электромагнитного поля в покровном слое и подложке экспоненциально уменьшаются по закону , где — положительный коэффициент.
В плоском трехслойном оптическом волноводе возможно распространение двух типов собственных волн (волноводных мод):
— TE (поперечно-электрические волны), у которых присутствует продольная составляющая вектора напряженности магнитного поля , а также компоненты и ;
— TM (поперечно-магнитные волны), у которых присутствует продольная составляющая вектора напряженности электрического поля , а также компоненты и .
Как будет показано ниже, анализ для TE и TM-мод может производиться раздельно друг от друга.
Будем представлять комплексные амплитуды напряженностей электрического и магнитного полей распространяющихся волн в следующем виде:
(1)
где и — функции, определяющие электрическое и магнитное поля в поперечной плоскости волновода; — постоянная распространения какой-либо волноводной моды.
Запишем уравнения Максвелла для электромагнитного поля в произвольном диэлектрическом слое волновода:
(2)
где и — относительные диэлектрическая и магнитная проницаемости слоя; — волновое число для вакуума.
Записывая (2) в проекциях на оси декартовой системы координат, с учетом принятых допущений получаем две системы уравнений:
(3)
которая описывает электромагнитное поле TE-мод и
(4)
которая описывает электромагнитное поле TM-мод.
1. Дисперсионное уравнение для TE-мод
плоского трехслойного волновода
Рассмотрим сначала систему уравнений (3), которая описывает электромагнитное поле TE-моды. Выражая из первых двух уравнений системы (3) составляющие и , и подставляя эти выражения в третье уравнение из (3), получаем однородное уравнение Гельмгольца для составляющей :
(5)
где — показатель преломления слоя.
Тангенциальная составляющая определяется из следующего соотношения:
(6)
Получим дисперсионное уравнение для TE-мод. Запишем решение уравнения Гельмгольца (5) для подложки, световедущей пленки и покровного слоя волновода, показанного на рис. 1.
В области 1 (подложка) решение уравнения (5) является экспоненциально затухающим:
(7)
где , — неизвестная постоянная.
Составляющая определяется из уравнения (6):
(8)
В области 2 (световедущая пленка) решение уравнения (5) представляет собой распространяющуюся волну:
(9)
где , и — неизвестные постоянные.
Составляющая определяется из уравнения (6):
(10)
В области 3 (покровный слой) решение уравнения (5) является экспоненциально затухающим:
(11)
где , — неизвестная постоянная.
Составляющая определяется из уравнения (6):
(12)
Воспользуемся граничными условиями, заключающимися в непрерывности тангенциальных составляющих векторов напряжённости электрического и магнитного полей на границе раздела двух диэлектрических сред:
(13)
Подставляя в граничные условия (13) явные выражения для составляющих (7)-(12), приходим к системе алгебраических уравнений относительно неизвестных коэффициентов:
(14)
Равенство нулю определителя системы уравнений (14) соответствует дисперсионному уравнению для TE-мод плоского трёхслойного оптического волновода:
(15)
На практике слои волноводы изготовляются из немагнитных диэлектриков, у которых . В этом случае дисперсионное уравнение (15) упрощается:
(16)
Уравнение (16) выражает связь . Однако явным образом из него эту зависимость получить нельзя и дисперсионное уравнение (16) может быть решено только численно. Различные корни решения соответствуют разным TE-модам.
2. Дисперсионное уравнение для TM-мод плоского
трехслойного волновода
Дисперсионное уравнение для TM-мод получается аналогичным образом с использованием системы уравнений (4).
Однако его можно записать автоматически, исходя из уравнения (15) для TE-мод. Для этого воспользуемся принципом перестановочной двойственности и в уравнении (15) произведем замену:
Дисперсионное уравнение для TM-мод имеет следующий вид:
(17)
3. Дисперсионное уравнение для TE и TM-мод плоского трехслойного
волновода в нормированном виде
Дисперсионная характеристика представляет собой график зависимости . Однако, как видно из уравнений (16) и (17) данную зависимость в явном виде получить не представляется возможным. Поэтому дисперсионное уравнение для собственных волн регулярной линии передачи можно записать следующим образом:
, (18)
которое в общем случае является трансцендентным и может быть решено только численными методами.
На первом этапе производится переход от величин и , имеющих размерность 1/м к безразмерным параметрам. Будем использовать два нормированных параметра:
— нормированная ширина волновода;
— нормированная постоянная распространения.
Используя новые нормированные параметры, несложно переписать уравнение (16) для TE-мод в следующем виде:
(19)
В нормированных переменных дисперсионное уравнение имеет вид:
. (20)
Уравнение для частот отсечек для TE-мод несложно получить из (19) при :
(21)
Путем численного решения уравнения (21) определяются его корни , соответствующие частотам отсечек TE-мод. Первый корень является нормированной частотой отсечки нулевой TE-моды, второй корень — первой TE-моды и т.д.
Аналогично несложно записать дисперсионное уравнение для TM-мод (17) в нормированном виде:
(22)
Нормированные частоты отсечек TM-мод определяются из следующего соотношения, которое получается из (22) при :
(23)
Дата добавления: 2015-07-26; просмотров: 96 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Упражнение 2.2. Исследование произвольного вращателя плоскости поляризации. | | | Алгоритм расчета дисперсионных характеристик плоского трехслойного оптического волновода |