|
Биосинтез белка
[править | править вики-текст]
Материал из Википедии — свободной энциклопедии
Схема синтеза белка рибосомой
Биосинтез белка — сложный многостадийный процесс синтеза полипептидной цепи из аминокислот, происходящий нарибосомах с участием молекул мРНК и тРНК. Процесс биосинтеза белка требует значительных затрат энергии.
Содержание
[убрать]
· 1 Введение
· 2 Процессинг РНК
· 3 Трансляция
· 4 Примечания
Введение[править | править вики-текст]
Биосинтез белка происходит в два этапа. В первый этап входит транскрипция и процессинг РНК, второй этап включаеттрансляцию. Во время транскрипции фермент РНК-полимераза синтезирует молекулу РНК, комплементарную последовательности соответствующего гена (участка ДНК). Терминатор в последовательности нуклеотидов ДНК определяет, в какой момент транскрипция прекратится. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, и редко происходит редактирование нуклеотидных последовательностей. После синтеза РНК на матрице ДНК происходит транспортировка молекул РНК в цитоплазму. В процессе трансляции информация, записанная в последовательности нуклеотидов, переводится в последовательность остатков аминокислот.
Процессинг РНК[править | править вики-текст]
Основная статья: Процессинг РНК
Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. К 5΄-концу присоединяетсякэп, а к 3΄-концу поли-А хвост, который увеличивает длительность жизни иРНК. С появлением процессинга в эукариотической клетке стало возможно комбинированиеэкзонов гена для получения большего разнообразия белков, кодируемых единой последовательностью нуклеотидов ДНК, — альтернативный сплайсинг.
Трансляция[править | править вики-текст]
Основная статья: Трансляция (биология)
У прокариот мРНК может считываться рибосомами в аминокислотную последовательность белков сразу после транскрипции, а у эукариот она транспортируется из ядра в цитоплазму, где находятся рибосомы. Скорость синтеза белков выше у прокариот и может достигать 20 аминокислот в секунду[1]. Процесс синтеза белка на основе молекулы мРНК называется трансляцией.
Рибосома содержит 2 функциональных участка для взаимодействия с тРНК: аминоацильный (акцепторный) и пептидильный (донорный). Аминоацил-тРНК попадает в акцепторный участок рибосомы и взаимодействует с образованием водородных связей между триплетами кодона и антикодона. После образования водородных связей система продвигается на 1 кодон и оказывается в донорном участке. Одновременно в освободившемся акцепторном участке оказывается новый кодон, и к нему присоединяется соответствующий аминоацил-т-РНК.
Во время начальной стадии биосинтеза белков, инициации, обычно метиониновый кодон узнаётся малой субъединицей рибосомы, к которой при помощи белковыхфакторов инициации присоединена метиониновая транспортная РНК (тРНК). После узнавания стартового кодона к малой субъединице присоединяется большая субъединица и начинается вторая стадия трансляции — элонгация. При каждом движении рибосомы от 5' к 3' концу мРНК считывается один кодон путём образования водородных связей между тремя нуклеотидами (кодоном) мРНК и комплементарным ему антикодоном транспортной РНК, к которой присоединена соответствующая аминокислота. Синтез пептидной связи катализируется рибосомальной РНК (рРНК), образующей пептидилтрансферазный центр рибосомы. Рибосомальная РНК катализирует образование пептидной связи между последней аминокислотой растущего пептида и аминокислотой, присоединённой к тРНК, позиционируя атомы азота иуглерода в положении, благоприятном для прохождения реакции. Ферменты аминоацил-тРНК-синтетазы присоединяют аминокислоты к их тРНК. Третья и последняя стадия трансляции, терминация, происходит при достижении рибосомой стоп-кодона, после чего белковые факторы терминации гидролизуют последнюю тРНК от белка, прекращая его синтез. Таким образом, в рибосомах белки всегда синтезируются от N- к C-концу.
тРНК также образуются из более длинных РНК-предшественников в результате ферментативного удаления лишних нуклеотидов с 5 - и 3 -концов молекулы. В некоторых случаях из одной длинной молекулы-предшественника в результате ферментативного расщепления образуются две и даже большее число разных т-РНК.
В ходе процессинга в предшественниках т-РНК происходят изменения двоякого рода. Во-первых, к некоторым т-РНК присоединяется 3 -концевая тринуклеотидная последовательность -С-С-А (3 ); в других т-РНК этот 3 -концевой тринуклеотид уже содержится в транскрипте. 3 -концевой остаток А представляет собой именно ту часть молекулы т-РНК, с которой ковалентно связывается соответствующая ей аминокислота перед включением в растущую полипептидную цепь на рибосоме. Во-вторых, ряд оснований в т-РНК специфическим образом модифицируется: одни метилируются, другие дезаминируются, третьи восстанавливаются. Модифицированные основания располагаются во всех т-РНК в определенных положениях.
Процесс образования иРНК называется транскрипцией (от лат. «транскрипцио» - переписывание). Если в нити ДНК стоит тимин, то полимераза включает в цепь иРНК аденин, если стоит гуанин - включает цитозин, если аденин - то ура-цил (в состав РНК не входит тимин).
По длине каждая из молекул иРНК в сотни раз короче ДНК. Информационная РНК - копия не всей молекулы ДНК, а только части ее, одного гена или группы рядом лежащих генов, несущих информацию о структуре белков, не обходимых для выполнения одной функции. У прокариот такая группа генов называется опероном. (О том, как гены объединены в оперон и как организовано управление транскрипцией, вы прочтете в § Регуляция транскрипции и трансляции. Генная и клеточная инженерия.)
В начале каждой группы генов находится своего рода посадочная площадка для полимеразы, называемая промотором. Это специфическая последовательность нуклеотидов ДНК, которую фермент «узнает» благодаря химическому сродству. Только присоединившись к промотору, полимераза способна начать синтез иРНК. В конце группы генов фермент встречает сигнал (в виде определенной последовательности нуклеотидов), означающий конец переписывания. Готовая иРНК отходит от ДНК, покидает ядро и направляется к месту синтеза белков - рибосоме, расположенной в цитоплазме клетки.
В клетке генетическая информация передается благодаря транскрипции от ДНК к белку:
Распад гемоглобина в тканях (образование билирубина)
Продолжительность жизни эритроцитов составляет 120 дней; после этого происходит их разрушение и освобождение гемоглобина. Главными органами, в которых осуществляется разрушение эритроцитов и распад гемоглобина, являются печень, селезенка и костный мозг, хотя, в принципе, оба процесса могут происходить и в клетках других органов (Березов, 1990).
Общий объем эритроцитов (гематокритная величина), или показатель гематокрита, дает представление о соотношении между объемами плазмы и форменных элементов крови (главным образом эритроцитов), полученном после центрифугирования крови. Принято гематокритной величиной выражать объем эритроцитов (Меньшиков, 1987).
Гемоглобин - основной дихательный пигмент эритроцитов, относящийся к хромопротеидам и обеспечивающий ткани кислородом; состоит из белка - глобина и гема - соединения протопорфирина IX с железом. Последний придает гемоглобину характерную окраску (Коржуев, 1964).
Молекула гемоглобина здорового человека (Hb А) состоит из четырех субъединиц, образованных комплексом группы гема - и полипептидной цепи глобина. Гем представляет собой протопорфириновое кольцо с поливалентным атомом железа в центре (Черниговский и др., 1968). Парные полипептидные цепи гемоглобина (2 a и 2 b) различаются по количеству аминокислотных остатков и по последовательности их расположения: a -цепь состоит из 141 аминокислотного остатка, b - цепь - из 146.
Гемоглобин F (фетальный, от анг. foetus-плод), (a2, g2) - главный компонент в крови новорожденных, где он составляет 60-80 %. В течении первого года после рождения Hb F почти полностью заменяется Hb А. В крови взрослого человека содержание Hb F в норме не превышает 1-2 %. a - цепи этого гемоглобина не отличаются по своей структуре от b - цепей Hb А, в то время как другая пара цепей - g - цепи - отличается от b - цепей Hb А. Аминокислотный анализ g - цепей показал, что g - цепи Hb F, как и b - цепи Hb А, состоят из 146 аминокислотных остатков, но отличаются порядком аминокислот в 39 позициях. Кроме того, g - цепь является единственной, в состав которой входят остатки изолейцина. Фетальный гемоглобин в 155 раз более устойчив к воздействию щелочи, чем Hb А, имеет лучшую растворимость в концентрированных солевых растворах (Идельсон, 1975).
Главным источником билирубина в организме является гемоглобин. Распад гемоглобина и его превращение в билирубин протекает в клетках ретикуло-эндотелиальной системы. Посчитано, что ежедневно у человека разрушается около 1% всей массы гемоглобина. Существует несколько путей поступления гемоглобина в ретикуло-эндотелиальные клетки (Иржак, 1975). При нормальных состояниях основным и главным источником гемоглобина является фагоцитоз состарившихся эритроцитов с последующим их разрушением и выделением гемоглобина. Гемоглобин может попадать в ретикуло-эндотелиальную систему и непосредственно из плазмы (Каллаева, 1991). Так, при быстром внутрисосудистом гемолизе в плазме может появиться необычный пигмент- метгемальбумин, который также превращается в билирубин в ретикуло-эндотелиальной системе. Метгемальбумин обнаружен в крови здоровых новорожденных. Как и следовало ожидать, метгемальбумин часто обнаруживают в высокой концентрации в сыворотке крови детей с тяжелой гемолитической болезнью новорожденных (Таболин, 1967).
Распад гемоглобина в печени начинается с разрыва - метиновой связи между I и II кольцами порфиринового кольца. Этот процесс катализируется НАДФ-содержащей оксидазой и приводит к образованию зеленого пигмента вердоглобина (холеглобина) (Измайлов, 1968).
Дальнейший распад вердоглобина, вероятнее всего, происходит спонтанно с освобождением железа, белка-глобина и образованием одного из желчных пигментов - биливердина. Спонтанный распад сопровождается перераспределением двойных связей и атомов водорода в пиррольных кольцах и метиновых мостиках. Образовавшийся биливердин ферментативным путем восстанавливается в печени в билирубин, являющийся основным желчным пигментом у человека и плотоядных животных.
Основным местом образования билирубина являются печень, селезенка и, по-видимому, эритроциты (при распаде которых иногда разрывается одна из метиновых связей в протопорфирине). Образовавшийся во всех этих клетках билирубин поступает в печень, откуда вместе с желчью изливается в желчный пузырь (Березов, 1990). Билирубин, образовавшийся вклетках системы макрофагов, имеет название свободного, или НБ, поскольку из-за плохой растворимости в воде он легко адсорбируется на белках плазмы крови, и для его определения в крови необходимо предварительное осаждение белков спиртом. После этого билирубин вступает во взаимодействие с диазореактивом Эрлиха (Комаров, 1981).
Неконъюгированный (свободный или непрямой) билирубин не может преодолевать почечный барьер, токсичен для головного мозга, особенно у грудных детей (снижены функции гематоэнцефалического барьера). Транспортировку НБ по кровеносной системе осуществляет в основном альбумин (альбумин-лигандин). При значительном увеличении концентрации непрямого билирубина в сыворотке крови (до 171,0-256,5 ммоль/л) часть пигмента не связывается с альбумином. Обычно отсутствие связи с белком объясняется полным использованием мощности альбумина (Хазанов, 1988). Каждая молекула альбумина может связывать 2 молекулы НБ, но одну из них прочно, а другую - рыхло. 1г альбумина прочной связью захватывает 14,4 ммоль НБ и столько же - непрочно. НБ в прочной связи с альбумином, хотя и может проникнуть в мозг, но нейротоксичностью, по - видимому, не обладает (Шабалов, 1996).
Виды билирубина
илирубин подразделяется на три типа: прямой (связанный билирубин), непрямой (несвязанный билирубин) и общий. Общий билирубин показывает общее содержание прямого и непрямого билирубина.
Непрямой билирубин – это токсичный билирубин, который недавно образовался в организме из гемоглобина и еще не обработан печенью. Непрямой билирубин не растворим в воде, но в то же время хорошо растворяется в жирах (липидах). С легкостью проникает в здоровые клетки и нарушает их функционирование.
Прямой билирубин – это обработанный печенью непрямой билирубин, который в дальнейшем выводится из организма при помощи желчи. Прямой билирубин менее токсичен и растворим в воде.
Образование прямого и непрямого билирубина связано с различными факторами, поэтому для правильной установки диагноза необходимо знать, какой именно билирубин повышен прямой или непрямой.
Надпочечники — это парный орган, который располагается на уровне 11-12 грудного и 1 поясничного позвонков. Находятся над верхними полюсами почек, отсюда и название — надпочечники.
Каждый надпочечник весит примерно 4 гр., имеет в длину 40 мм, в ширину — 20 мм, толщиной — 30 мм. Надпочечники располагаются за брюшиной, как и почки, и окружены капсулой. Надпочечники хорошо кровоснабжаются, имеется 3 разных источника. Поэтому никогда не возникает инфаркта этой железы, поскольку если это случится, то можно ждать тяжелейшее состояние надпочечниковой недостаточности. Об этом вы можете прочитать в статье «Надпочечниковая недостаточность».
Анатомически надпочечник разделяют на:
· Кору надпочечника
· Мозговое вещество надпочечника
На долю коры надпочечника приходится 90 % всей железы. Остальные 10 % приходится на мозговое вещество надпочечника.
Дата добавления: 2015-07-26; просмотров: 118 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Фото, рисунки, плакаты. | | | Глюкокортикоидные гормоны надпочечников |