Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Теорема о движении центра масс системы материальных точек

Читайте также:
  1. Bis. Категория истины (возможно, под другим именем) является центральной категорией любой возможной философии.
  2. Host BusПредназначена для скоростной передачи данных (64 разряда) и сигналов управления между процессором и остальными компонентами системы.
  3. I этап реформы банковской системы (подготовительный)приходится на 1988–1990 гг.
  4. I. Методы исследования в акушерстве. Организация системы акушерской и перинатальной помощи.
  5. I. РАСТВОРЫ И ДИСПЕРСНЫЕ СИСТЕМЫ
  6. II. 1. Анатомия магистральных притоков центральных вен
  7. II. 4. Осложнения и их профилактика при катетеризациях центральных вен

В любой системе частиц имеется одна замечательная точка, называемая центром масс, которая обладает рядом интересных и важных свойств. Ее положение относительно начала данной системы координат характеризуется радиус-вектором , определяемым как

  , (2.10)

где – масса и радиус-вектор -й частицы, – масса всей системы, – полное число частиц в системе. Если взять производную по времени от обеих частей уравнения и умножить обе части на , то получится:

или

,

где – скорость движения центра масс системы. Таким образом, импульс системы материальных точек равен произведению массы системы на скорость ее центра масс:

.

Подставив это выражение в (2.9), получим:

  . (2.11)

Отсюда следует, что центр масс системы материальных точек движется как материальная точка, масса которой равна суммарной массе всей системы, а действующая сила – геометрической сумме всех внешних сил, действующих на все точки системы. Этот результат называется теоремой о движении центра масс системы материальных точек. Уравнение (2.11) по форме совпадает с основным уравнением динамики материальной точки и является его обобщением на систему материальных точек: ускорение системы как целого прямо пропорционально результирующей всех внешних сил и обратно пропорционально суммарной массе системы.

Если система замкнута, то и уравнение (2.11) переходит в , следовательно, . Таким образом, центр масс замкнутой системы движется прямолинейно и равномерно или покоится.

 

 


Дата добавления: 2015-07-17; просмотров: 57 | Нарушение авторских прав


Читайте в этой же книге: Центр масс в релятивистской механике | Центр тяжести | Вычисление момента |
<== предыдущая страница | следующая страница ==>
Частные случаи относительного движения| Центр масс

mybiblioteka.su - 2015-2024 год. (0.006 сек.)