Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Радиус-вектор и его производные

Читайте также:
  1. Вспомните значение следующих глаголов и подберите к ним производные. Например: to calculate — calculating, calculator, calculation.
  2. Задание №1. Найти производные функций
  3. Задание №3. Найти частные производные от неявных функций
  4. Назовите основные и производные единицы Международной
  5. Определение. Частные производные вида и т.д. называются смешанными производными.
  6. ПОЛОСТИ ТЕЛА. СЕРОЗНЫЕ ОБОЛОЧКИ И ИХ ПРОИЗВОДНЫЕ.
  7. Предельные углеводороды, их галогенные производные

Радиус-вектор материальной точки указывает на её положение по отношению к произвольной точке, зафиксированной в пространстве, которая обычно называется началом координат, и обозначается O. Это вектор r соединяющий начало координат с частицей. В общем случае, материальная точка движется, поэтому r является функцией t, промежутка времени прошедшего с произвольного начального момента. Скорость изменения положения со временем, определяется так:

.

Ускорение, или скорость изменения скорости, это:

.

Вектор ускорения может меняться за счет изменения его направления, величины, или и того и другого. Если скорость уменьшается, иногда пользуются термином «замедление», но вообще, термин «ускорение» относится к любому изменению скорости.

Второй закон Ньютона связывает массу и скорость частицы с векторной величиной, известной как сила. Пусть m — масса тела и F — векторная сумма всех приложенных к нему сил (то есть равнодействующая сила.) Тогда второй закон Ньютона выглядит так:

.

Величина m v называется импульсом. В большинстве случаев, масса m не изменяется со временем, и закон Ньютона можно записать в упрощенной форме

где a — ускорение, определенное выше. Не всегда выполняется условие независимости массы от времени. Например, масса ракеты уменьшается по мере использования горючего. В таких случаях последнее выражение неприменимо, и следует пользоваться полной формой второго закона Ньютона.

Второго закона Ньютона недостаточно для описания движения частицы. Дополнительно требуется описание силы F, полученное из рассмотрения сущности физического взаимодействия, в котором участвует тело. Например, сила трения может быть смоделирована как функция скорости частицы, а именно

где λ — некоторая положительная постоянная. Получив независимое выражение для каждой силы, действующей на тело, мы можем подставить его во второй закон Ньютона и получим дифференциальное уравнение, называемое уравнением движения. Продолжая наш пример, примем, что на тело действует только сила трения. Тогда уравнение движения будет иметь вид

.

Это можно интегрировать, что даст

где v 0 — начальная скорость. Это означает, что скорость тела экспоненциально уменьшается со временем до нуля. Проинтегрировав последнее выражение, мы можем получить радиус-вектор r тела, как функцию времени.

Важными силами являются сила всемирного тяготения и сила Лоренца для электромагнетизма. Помимо этого, для определения сил, действующих на тело, используется третий закон Ньютона: если мы знаем, что тело A действует с силой F на тело B, значит B должно действовать с равной по величине и противоположной по направлению силой реакции, − F, на A.


Дата добавления: 2015-07-17; просмотров: 75 | Нарушение авторских прав


Читайте в этой же книге: Динамика материальной точки | Инерциальные системы отсчета. Первый закон Ньютона | Второй закон Ньютона |
<== предыдущая страница | следующая страница ==>
Гравитационное взаимодействие.| Энергия

mybiblioteka.su - 2015-2024 год. (0.006 сек.)