Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Электрический заряд и его свойства

Читайте также:
  1. II.7. Свойства усилительных элементов при различных способах
  2. III.1. Физические свойства и величины
  3. III.3. Влияние обратной связи на свойства усилителя.
  4. S231 П Сингл (Магнитное поле движущегося заряда, теорема о циркуляции)
  5. XI. ПРИСПОСОБЛЕНИЕ И ДРУГИЕ ЭЛЕМЕНТЫ, СВОЙСТВА. СПОСОБНОСТИ И ДАРОВАНИЯ АРТИСТА
  6. А. ХАРАКТЕРНЫЕ СВОЙСТВА КАЖДОГО ОРГАНА
  7. АБРАЗИВНЫЕ МАТЕРИАЛЫ И ИХ ОСНОВНЫЕ СВОЙСТВА

Зако́н сохране́ния электри́ческого заря́да гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа калибровочной инвариантности[1][2]. Требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. В изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. Однако такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых — заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. То есть был бы отрезок времени, в течение которого заряд не сохраняется. Требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме.

Кулон В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где — сила, с которой заряд 1 действует на заряд 2; — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — ); — коэффициент пропорциональности.

Диэлектрическя проницаемость Нахождение величины диэлектрического коэффициента K какого-либо вещества, коэффициента, входящего почти во все формулы, с которыми приходится иметь дело в электростатике, может быть произведено весьма различными способами. Наиболее употребительные способы суть нижеследующие.

1) Сравнение электроёмкостей двух конденсаторов, имеющих одинаковые размеры и форму, но у которых у одного изолирующим слоем является слой воздуха, у другого — слой испытуемого диэлектрика.2) Сравнение притяжений между поверхностями конденсатора, когда этим поверхностям сообщается определённая разность потенциалов, но в одном случае между ними находится воздух (сила притяжения = F0), в другом случае — испытуемый жидкий изолятор (сила притяжения = F). Диэлектрический коэффициент находится по формуле: 3) Наблюдения электрических волн (см. Электрические колебания), распространяющихся вдоль проволок. По теория Максвелла скорость распространения электрических волн вдоль проволок выражается формулой

в которой K обозначает диэлектрический коэффициент среды, окружающей собой проволоку, μ обозначает магнитную проницаемость этой среды. Можно положить для огромного большинства тел μ = 1, а потому получается

14 электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов). Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга. Если в пространстве имеется система заряженных тел, то в каждой точке этого пространства существует силовое электрическое поле. Оно определяется через силу, действующую на пробный заряд, помещённый в это поле. Пробный заряд должен быть малым, чтобы не повлиять на характеристику электростатического поля. Основные характеристики электростатического поля напряженность потенциал

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке ичисленно равная отношению силы действующей на неподвижный[1]пробный заряд, помещенный в данную точку поля, к величине этого заряда : .Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном[2] множителе).


Дата добавления: 2015-07-17; просмотров: 91 | Нарушение авторских прав


Читайте в этой же книге: Вращение вокруг неподвижной оси | Импульс | Изопроцес | Явления переноса |
<== предыдущая страница | следующая страница ==>
Первое начало термодинамик| потенциальная энергия электрического заряда

mybiblioteka.su - 2015-2025 год. (0.006 сек.)