Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Подставляем полученное соотношение в исходное уравнение

Читайте также:
  1. Z-преобразование синусной компоненты выходного сигнала связано с Z-преобразованием входного сигнала следующим соотношением
  2. Аналитическое сглаживание временного ряда. Уравнение тренда.
  3. Балансовое уравнение основности шлака.
  4. Балансовое уравнение по выходу чугуна.
  5. Балансовое уравнение тепловых эквивалентов компонентов шихты и топлива.
  6. Билет 8 вопрос 1. Регулярные методы оптимизации. Вариационное исчисление: задачи, приводящие к вариационному исчислению и уравнение Эйлера.
  7. В) Стереогониометр - прибор, наглядно показывающий соотношение фаз в выходном стереосигнале.

 

 

 

Из этого уравнения определим переменную функцию С1(х):

Интегрируя, получаем:

Подставляя это значение в исходное уравнение, получаем:

 

.

Таким образом, мы получили результат, полностью совпадающий с результатом расчета по методу Бернулли.

 

При выборе метода решения линейных дифференциальных уравнений следует руководствоваться простотой интегрирования функций, входящих в исходный интеграл.

 

Далее рассмотрим примеры решения различных дифференциальных уравнений различными методами и сравним результаты.

 

 

Пример. Решить уравнение

 

Сначала приведем данное уравнение к стандартному виду:

Применим полученную выше формулу:

 

 

Уравнение Бернулли.

 

Определение. Уравнением Бернулли называется уравнение вида

где P и Q – функции от х или постоянные числа, а n – постоянное число, не равное 1.

 

Для решения уравнения Бернулли применяют подстановку , с помощью которой, уравнение Бернулли приводится к линейному.

Для этого разделим исходное уравнение на yn.

 

Применим подстановку, учтя, что .

 

Т.е. получилось линейное уравнение относительно неизвестной функции z.

Решение этого уравнения будем искать в виде:

 

Пример. Решить уравнение

 

Разделим уравнение на xy2:

Полагаем

.

Полагаем

Произведя обратную подстановку, получаем:

 

 

Пример. Решить уравнение

 

Разделим обе части уравнения на

Полагаем

Получили линейное неоднородное дифференциальное уравнение. Рассмотрим соответствующее ему линейное однородное уравнение:

 

Полагаем C = C(x) и подставляем полученный результат в линейное неоднородное уравнение, с учетом того, что:

 

 

Получаем:

Применяя обратную подстановку, получаем окончательный ответ:

 

 


Дата добавления: 2015-07-15; просмотров: 83 | Нарушение авторских прав


Читайте в этой же книге: Определение. Частные производные вида и т.д. называются смешанными производными. | Дифференциальное исчисление функции | Определение. Наивысший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения. |
<== предыдущая страница | следующая страница ==>
Уравнения с разделяющимися переменными| Введение

mybiblioteka.su - 2015-2024 год. (0.007 сек.)