Читайте также: |
|
Инфразвук представляет собой механические колебания, распространяющиеся в упругой среде (например, твердой, жидкой илигазообразной) с частотой менее 20 Гц. Он характеризуется такими же параметрами, как и звук. Чем больше амплитуда колебаний, тем больше инфразвуковое давление и соответственно сила инфразвука. Под влиянием инфразвука повышается обмен веществ, отмечаются вестибулярные нарушения, снижение остроты зрения, и слуха, изменение ритма дыхания и сердечных сокращений. Одновременно возможны нарушения периферического кровообращения, деятельности ЦНС, пищеварения.
Инфразвуковые колебания невидимые и неслышимые волны вызывают у человека чувство глубокой подавленности и необъяснимого страха.
Инфразвук вреден во всех случаях – слабый действует на внутреннее ухо и вызывает симптомы морской болезни. Сильный - вызывает повреждение внутренних органов из-за сильной их вибрации. Инфразвук средней силы может вызвать слепоту.
Источниками инфразвука на промышленных предприятиях являются вентиляторы, компрессорные установки, все медленно вращающиеся машины и механизмы. Наиболее мощными источниками инфразвука являются реактивные двигатели. В обычных условиях городской и производственной среды уровни инфразвука невелики, но даже слабый инфразвук от городского транспорта входит в общий шумовой фон города и служит одной из причин нервной усталости жителей.
Производственный шум, его влияние на организм и борьба с ним
Производственный шум является физическим фактором. В связи с ростом его интенсивности в последние годы он приобретает более важное гигиеническое значение, так как сопровождает работу представителей многочисленных профессий: котельщиков, клепальщиков, кузнецов, трактористов, комбайнеров, ремонтников и т.д.
Для большинства врачебных специальностей шум не является актуальным производственным фактором, за исключением некоторых специалистов.
В гигиенической практике шум – это совокупность звуков разной интенсивности и частоты, беспорядочно изменяющихся во времени, возникающих в производственных условиях и вызывающих у работающих неприятные ощущения, объективные изменения органов и систем. Звуком называются периодические механические колебания определенной частоты, распространяющиеся в упругой среде. В зависимости от среды, в которой распространяется звук, различают воздушный и структурный шумы. Источник звука формирует в упругой среде фронт повышенного давления, который распространяется во всех направлениях от источника. На участке же, примыкающем к фронту повышенного давления, возникает разрежение и, следовательно, более низкое по сравнению с атмосферным давлением. Таким образом, распространяющаяся в упругой среде звуковая волна представляет собой чередование участков сгущения и разрежения среды, т.е. колебательный процесс.
Субъективно воспринимаемую величину звука называют его громкостью, частота определяет высоту тона, а набор частот (акустический спектр) – тембр звучания.
Звуковые колебания, как и всякое волновое движение, подчиняются законам интерференции и дифракции. Процесс наложения друг на друга нескольких звуковых волн называется интерференцией. Если два колебания одинаковой частоты и амплитуды складываются в одной фазе, то амплитуда колебаний возрастает, если фазы противоположны, то уменьшается. Огибание волнами препятствия называется дифракцией. Явление дифракции наблюдается в том случае, если размеры преграды или щели меньше длины волны. Если размеры преграды больше длины волны, то за ней образуется область звуковой тени. Кроме того, при столкновении звуковой волны с препятствием возможны передача части звуковой энергии через преграду (преломление), возвращение части энергии обратно (отражение) и поглощение звуковой энергии. Все эти особенности звуковых волн используются при проектировании шумозащитных устройств.
Пространство, в котором звуковые поля свободно распространяются, не встречая отражающих поверхностей, называется свободным звуковым полем. В производственных условиях звуковые поля встречаются очень редко. При этом звук в помещении не исчезает мгновенно после отключения источника, а продолжает отражаться от поверхностей, постепенно поглощаясь. Время, затраченное на угасание звука, называется временем реверберации. Оно определяется как время, необходимое для снижения уровня шума в помещении на 60% после отключения источника.
Слышимый, т.е. воспринимаемый человеческим ухом, диапазон звуков включает в себя частоты от 16 Гц до 20 кГц. При частоте колебаний ниже 16 Гц говорят об инфразвуке, а выше 20 кГц – об ультразвуке.
Минимальная интенсивность звука, которую слуховой орган в состоянии воспринять, называется порогом слышимости. За верхнюю границу слуховых ощущений принимают порог осязания, или интенсивность звука, при которой он вызывает болевое ощущение. Интенсивность звука можно оценить по звуковому давлению, в барах или ньютонах.
В процессе восприятия звуков (шума слуховой анализатор в зависимости от спектрального состава и силы шума адаптируется к нему: к сильным звуковым раздражителям чувствительность органа слуха несколько понижается и восстанавливается после прекращения действи я раздражителя.
Изменение же порогов более значительное, и замедленное восстановление чувствительности является признаком утомления слуха. Чем выше звук, тем больше его утомляющее действие. Интенсивным шумом в производственных условиях нередко вызывается стойкое понижение чувствительности к различным тонам и шепотной речи (профессиональная тугоухость и глухота).
В развитии профессиональной глухоты, несомненно, решающую роль играет звуковоспринимающий (кохлеарный) аппарат и, вероятно, корковая область слухового анализатора. При морфологическом исследовании внутреннего уха лиц, страдавших при жизни тугоухостью, обнаружены атрофические и некробиотические изменения в кортиевом органе и основном завитке спирального ганглия. При длительной работе в условиях интенсивного шума, особенно высокочастотного, наступает постепенное ослабление слышимости скачала высоких, а затем и других тонов, которое может привести к полной глухоте.
Наряду с изменениями в слуховом аппарате установлено влияние шума на центральную нервную систему, характеризующееся симптомами поражения ее; замедлением нервных реакций, понижением внимания, работоспособности, производительности труда.
Под влиянием шума изменяются ритм дыхания, частота пульса, уровень кровяного давления и другие вегетативные функции. Иногда под влиянием шума наблюдаются также изменение двигательной и секреторной функций желудка, объема внутренних органов, газообмена.
Множественное нарушение функций под влиянием шума объединены в понятие «шум о в а я болезнь».
Таким образом, действие шума зависит от трех основных условий;
1) длительности воздействия шума; профессиональная тугоухость и профессиональная глухота развиваются обычно постепенно, в течение ряда лет;
2) интенсивности шума: чем интенсивнее шум, тем быстрее развиваются утомление и соответствующие патологические изменения;
3) частотной характеристики (спектра шума); чем больше преобладают в шуме высокие частоты, тем он опаснее в смысле развития тугоухости, тем сильнее его раздражающее действие, тем скорее, возникает утомление.
Учитывая, что шум может влиять на различные функции организма (нарушает сон, мешает выполнять напряженную умственную работу), для разных помещений устанавливаются различные допустимые уровни шума.
Шум, не превышающий 30—36 дб, не ощущается как утомительный или заметный, Такой уровень шума является допустимым для читальных залов, больничных палат, жилых комнат ночью. Для конструкторских бюро, конторских помещений допускается уровень шума 50—60 дб.
Для производственных помещений, в которых снижение уровня шума связано с большими техническими трудностями, приходится ориентироваться не только на утомляющее действие шума, но и на предотвращение развития профессиональной патологии.
Большинство исследователей склоняется к тому, что шум в пределах 80—85 дб, а по некоторым данным — до 90 дб, не. вызывает при длительном воздействии профессиональной тугоухости.
Меры по предупреждению вредного воздействия шума. Мероприятия должны быть направлены как на снижение шума в действующих цехах, так и, а особенности, на предупреждение высокого уровня шума во вновь проектируемых цехах, при конструировании и изготовлении новых машин и производственных агрегатов.
Технические меры борьбы с шумом многообразны.
1. Изменения технологии процессов и конструкции машин, являющихся источником шума. К мерам этого типа относятся замена шумных процессов бесшумными, ударных процессов безударными.
При изготовлении машин шум уменьшают путем тщательной пригонки деталей, уменьшения допусков, максимального статического и динамического уравновешивания деталей, тщательной смазки или погружения соударяющихся деталей в масляные ванны, замены металла в некоторых деталях (шестернях и др.) незвучными материалами (пластмассой) или перемежающейся установки металлических и неметаллических деталей, замену подшипников качания подшипниками скольжения, уменьшения по возможности скорости обтекания деталей газовыми и воздушными струями (в вентиляторах, воздуховодах).
2. Поглощение (демпфирование) вибраций деталей, особенно имеющих большие вибрирующие поверхности, путем облицовки их материалами, поглощающими вибрации (резиной, войлоком, пробкой, асбестом); применение звукопоглощающих (обшивок, распорок, прокладок при ударной обработке больших поверхностей; хорошая изоляция при машин и агрегатов на фундаменты, предупреждающая распространение вибраций (а следовательно, и шума) через фундаменты, пол и т. п.
Установка глушителей для поглощения шума выхлопа воздуха, газа и пара различных машин, а также шумов от сжатия всасываемого воздуха. Эти глушители бывают различного типа (камерные, сотовые, пластинчатые, ячеистые). Теория устройства таких глушителей хорошо разработана и позволяет снизить эти так называемые аэродинамические шумы на 50—80 дб.
3. Широко применяется в практике борьбы с шумом на производстве звукоизоляция.
При невозможности снижения шума в его источнике шумящие агрегаты должны быть выделены в специальные шумоизолированные помещения кабины, закрытые изолирующими кожухами. Наиболее целесообразным при такой изоляции шумящего агрегата является устройство дистанционного управления им с выносом пульта управления в малошумное помещение. Иногда шумящие агрегаты остаются в помещении, а для обслуживающего персонала устраивается шумоизолирующая кабина. Целесообразна планировка размещения шумящих производств на определенном расстоянии от объектов, которые должны быть защищены от шума (так, авиационные мотороиспытательные станции с уровнем шума 130 дб должны быть размещены вне городской черты с соблюдением соответствующей санитарно-защитной зоны; то же касается расстояния и размещения шумных цехов по отношению к нешумным цехам, жилым массивам); шумные цехи должны быть окружены древесными насаждениями, поглощающими шум.
В случаях, когда техническими мерами достигнуть допустимого уровня шума не удается, следует применять индивидуальные средства защиты от шума. Исходя из того, что даже периодический отдых от сильного шумового раздражителя может снизить его вредное действие, можно рекомендовать в цехах, где шум существующими техническими средствами не может быть снижен до безвредных уровней, кроме ношения различного типа заглушек, устройство звукоизолированных помещений, в которых работающие могут находиться во время обеденных и других перерывов в работе, уровень шума в таких помещениях не должен превышать 60 дб.
Дата добавления: 2015-07-15; просмотров: 343 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Вибрация | | | В живой ткани нет элементов подобных катушке индуктивности, поэтому импеданс определяется только омическим и ёмкостным сопротивлением. |