Читайте также:
|
|
Аннотация:
Антимитотический агент комбретастатин А4 (СА-4) сравнительно недавно предложен в качестве антиваскулярного средства для противоопухолевой терапии. С целью уменьшения системной токсичности за счет применения в виде липосомальных препаратов, в данной работе синтезированы новые липофильные пролекарства - олеоильные производные СА-4 и его 4-арилкумаринового аналога (АгС): СА4-01е и ArC-Ole, соответственно. Показано, что липосомы среднего диаметра 100 нм, полученные на основе яичного фосфатидилхолина и фосфатидилинозита из пекарских дрожжей, количественно включают до 15 моль-% СА4-01е или 7 моль-% ArC-Ole. Также получены липосомы с пролекарствами, оснащённые тетрасахаридным лигандом селектинов, а именно сиалил-Lewis X (SiaLе в степени х), с целью адресной доставки к эндотелию формирующейся de novo сосудистой системы. Противоопухолевые свойства in vivo изучали на модели медленно растущего рака молочных желез (РМЖ) мышей. В используемых дозировке (22 мг/кг) и протоколе введения (4 раза с интервалом в одну неделю, начиная с появления пальпируемых опухолей) цитостатик СА-4 не оказал противоопухолевого действия, более того, даже стимулировал рост РМЖ. Липосомальные формы СА4-0lе не оказывали стимулирующего действия на рост опухолей. Однако, для получения выраженного противоопухолевого эффекта, очевидно, необходимо увеличить кратность введения препаратов липосом. Новый антимитотический агент АrС показал меньший на порядок уровень цитотоксичности in vitro в культуре клеток карциномы молочной железы человека. Тем не менее, при испытаниях на мышиной модели РМЖ полученный аналог показал противоопухолевый эффект в двухкратной эквивалентной дозе по СА-4. Результаты показывают перспективность применения ArC-Ole в липосомах, оснащённых SiaLex: препарат частично подавлял рост опухоли уже после второго введения. Необходим дальнейший подбор доз и режимов введения АrС и препаратов липосом с ArC-Ole.
Авторы:
Моисеева Е.В.
Кузнецова Н.Р.
Свирщевская Е.В.
Бовин Н.В.
Ситников Н.С.
Шавырин А.С.
Белецкая И.П.
Комб С.
Федоров А.Ю.
Водовозова Е.Л.
Издание: Биомедицинская химия
Год издания: 2012
Объем: 13с.
Дополнительная информация: 2012.-N 3.-С.326-338. Библ. 25 назв.
Просмотров: 45
https://ru.wikipedia.org/wiki/%D2%F3%E1%F3%EB%E8%ED
Тубулин
[править | править вики-текст]
Материал из Википедии — свободной энциклопедии
Тубули́н — это белок, из которого построены микротрубочки. В них, а также в цитоплазме клеток он находится в форме димера, состоящего из двух форм — α- и β-тубулина. Одна молекула α-тубулина и одна молекула β-тубулина в цитоплазме клеток объединяются в димер. В составе такого димера к каждой молекуле тубулина присоединено по одной молекуле ГТФ. У каждой из этих субъединиц выделяют три домена. Форма γ-тубулина принимает участие в нуклеации микротрубочек, то есть образовании затравки, с которой начинается рост. Тубулин способен связывать в растворе с молекулы ГТФ. Рост микротрубочек осуществляется только за счет присоединения димеров тубулина, в которых обе субъединицы связаны с молекулами ГТФ. В стенкахмикротрубочек происходит гидролиз ГТФ, связанной с β-субъединицей, до ГДФ (связанная с α-субъединицей ГТФ стабильна). Связанная с ГДФ форма тубулина легче отделяется от микротрубочек, что определяет динамическую нестабильность микротрубочек — при определенных условиях они быстро распадаются почти полностью.
Долгое время полагали, что тубулин характерен только для эукариотических клеток. Однако недавние исследования обнаружили участвующий в делениипрокариотов гомологичный белок FtsZ, который может быть эволюционным предшественником тубулина.
Дельта и эпсилон формы тубулины были найдены в центриолях и, по-видимому, принимают участие в образовании веретена деления.
Молекулярный вес β-тубулина порядка 55 кДа. Продольный размер — 8 нм.
Тубулин является мишенью для противоопухолевых препаратов (таксол, доцетаксел, паклитаксел) и колхицина. Колхицин связывается с тубулином, препятствуя формированию микротрубочек. Это его свойство используется для получения искусственных полиплоидов и в терапии подагры (колхицин снижает подвижности нейтрофилов, тем самым способствуя спаду воспалительного процесса).
Смотрите также[править | править вики-текст]
· Статмин
https://ru.wikipedia.org/wiki/%D0%9C%D0%B8%D0%BA%D1%80%D0%BE%D1%82%D1%80%D1%83%D0%B1%D0%BE%D1%87%D0%BA%D0%B8
Микротрубочки
[править | править вики-текст]
Материал из Википедии — свободной энциклопедии
Структура микротрубочек.
Микротрубочки — белковые внутриклеточные структуры, входящие в состав цитоскелета.
Микротрубочки представляют собой полые внутри цилиндры диаметром 25 нм. Длина их может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Их стенка образована димерамитубулина. Микротрубочки, подобно актиновым микрофиламентам, полярны: на одном конце происходит самосборка микротрубочки, на другом — разборка. В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз, цитокинез и везикулярный транспорт.
Содержание
[убрать]
· 1 Строение
· 2 Динамическая нестабильность
· 3 Функция
· 4 Растительные микротрубочки
o 4.1 Организация и динамика
o 4.2 Белки, ассоциированные с микротрубочками
o 4.3 Кортикальные микротрубочки
· 5 Примечания
· 6 См. также
· 7 Литература
Строение[править | править вики-текст]
Микротрубочки — это структуры, в которых 13 протофиламентов, состоящих из гетеродимеров α- и β-тубулина, уложены по окружности полого цилиндра. Внешний диаметр цилиндра около 25 нм, внутренний — около 15.
Один из концов микротрубочки, называемый плюс-концом, постоянно присоединяет к себе свободный тубулин. От противоположного конца — минус-конца — тубулиновые единицы отщепляются.
β-тубулин.
В образовании микротрубочки выделяют три фазы:
· замедленная фаза, или нуклеация. Это этап зарождения микротрубочки, когда молекулы тубулина начинают соединяться в более крупные образования. Такое соединение происходит медленнее, чем присоединение тубулина к уже собранной микротрубочке, поэтому фаза и называется замедленной;
· фаза полимеризации, или элонгация. Если концентрация свободного тубулина высока, его полимеризация происходит быстрее, чем деполимеризация на минус-конце, за счет чего микротрубочка удлиняется. По мере её роста концентрация тубулина падает до критической и скорость роста замедляется вплоть до вступления в следующую фазу;
· фаза стабильного состояния. Деполимеризация уравновешивает полимеризацию, и рост микротрубочки останавливается.
Лабораторные исследования показывают, что сборка микротрубочек из тубулинов происходит только в присутствиигуанозинтрифосфата и ионов магния.
Динамическая нестабильность[править | править вики-текст]
Микротрубочки являются динамическими структурами и в клетке постоянно полимеризуются и деполимеризуются. Центросома, локализованная вблизиядра, выступает в клетках животных и многих протистов как центр организации микротрубочек (ЦОМТ): они растут от неё к периферии клетки. В то же время микротрубочки могут внезапно прекратить свой рост и укоротиться обратно по направлению к центросоме вплоть до полного разрушения, а затем вырасти снова. При присоединении к микротрубочке молекулы тубулина, несущие ГТФ, образуют «шапочку», которая обеспечивает рост микротрубочки. Если локальная концентрация тубулина падает, связанная с бета-тубулином ГТФ постепенно гидролизуется. Если полностью гидролизуется ГТФ «шапочки» на ±конце, это приводит к быстрому распаду микротрубочки. Таким образом, сборка и разборка микротрубочек связана с затратами энергии ГТФ.
Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.
Функция[править | править вики-текст]
Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными. Это высокомолекулярные соединения, состоящие из двух тяжёлых (массой около 300 кДа) и нескольких лёгких цепей. В тяжёлых цепях выделяют головной и хвостовой домены. Два головных домена связываются с микротрубочками и являются собственно двигателями, а хвостовые — связываются с органеллами и другими внутриклеточными образованиями, подлежащими транспортировке.
Выделяют два вида моторных белков:
· цитоплазматические динеины;
· кинезины.
Динеины перемещают груз только от плюс-конца к минус-концу микротрубочки, то есть из периферийных областей клетки к центросоме. Кинезины, напротив, перемещаются к плюс-концу, то есть к клеточной периферии.
Перемещение осуществляется за счёт энергии АТФ. Головные домены моторных белков для этого содержат АТФ-связывающие участки.
Помимо транспортной функции, микротрубочки формируют центральную структуру ресничек и жгутиков — аксонему. Типичная аксонема содержит 9 пар объединённых микротрубочек по периферии и две полных микротрубочки в центре. Из микротрубочек состоят также центриоли и веретено деления, обеспечивающее расхождение хромосом к полюсам клетки при митозе и мейозе. Микротрубочки участвуют в поддержании формы клетки и расположения органоидов (в частности, аппарата Гольджи) в цитоплазме клеток.
Растительные микротрубочки[править | править вики-текст]
Микротрубочки растений являются высокодинамическими составляющими цитоскелета, которые вовлечены в важные клеточные процессы, в частности, сегрегацию хромосом, формирование фрагмопласта, микрокомпартментализацию, внутриклеточный транспорт, а также в поддержание постоянной формы и полярности клетки. Мобильность микротрубочек обеспечивается динамической нестабильностью, передвижением полимеров моторными белками, тредмилингом (en:Treadmilling) и гибридным механизмом тредмилинга с динамической нестабильностью плюс-конца и медленной деполимеризацией минус-конца[1].
Организация и динамика [править | править вики-текст]
Микротрубочки, подсвеченныезеленым флуоресцентным белком (Внизу, в центре).
Микротрубочки чрезмерно чувствительны к биотическим и абиотическим факторам окружающей среды (холоду, освещению, засухе, засолению, влиянию гербицидов и пестицидов, затоплению, сжатию, воздействию электрического поля, давлению и силе тяжести), а также к фитогормонам, антимитотическим препаратам и ряду других биологически активных соединений[2]. Микротрубочки являются полыми полярными цилиндрическими филаментами диаметром свыше 24 нм, которые собираются из гетеродимеров α-и β-тубулина, которые в положении «голова-к-хвосту» формируют 13 протофиламентов.
Существенное ограничение иммуногистохимических исследований состоит в невозможности прижизненной визуализации динамики микротрубочек эукариотических и прокариотических клеток в режиме реального времени. Это ограничение было преодолено благодаря применению конфокальной микроскопии с зеленым флуоресцентным белком, изолированным из медузы Aequorea victoria L.[3]. Репортёрная конструкция GFP-MBD для гетерологической трансформации даже при низком уровне транзиентной экспрессии in vivo и in vitro позволяет визуализировать динамическую нестабильнось микротрубочек в разных типах клеток корня[4][5].
В клетках высших растений присутствуют четыре типа построений микротрубочек:
· сетка кортикальных и эндоплазматических микротрубочек,
· препрофазная лента,
· митотическое веретено,
· фрагмопласт[6].
Белки, ассоциированные с микротрубочками [править | править вики-текст]
Все компоненты цитоскелета и другие органеллы связаны между собой рядом специфических белков, ассоциированных с микротрубочками (БАМ). В животных клетках наиболее исследованными БАМ является tau и БАМ2, которые стабилизируют микротрубочки и присоединяют их к другим клеточным структурам, а также транспортные белки динеин и кинезин[7]. Функционирование различных групп растительных микротрубочек зависит от наличия изоформ БАМ из семьи БАМ 65 и регуляторных киназ и фосфатаз. В частности, высококонсервативный животный гомолог семьи БАМ65 важен для получения микротрубочками определенных конфигураций на протяжении развития растения[5]. Ориентация и организация различных популяций и типов построений микротрубочек является ткане- и органоспецифической[8].
Построение корня Резуховидки Таля Arabidopsis thaliana L. типично для двудольных растений. Ближайшим к поверхности корня является эпидермальный слой, клетки которого в зрелой зоне в зависимости от способности инициировать развитие корневых волосков являются трихобластами илиатрихобластами[9]. Глубже расположены накопительный безхлоропластный кортикальный слой с многочисленными межклетниками и плазмодесмами и слой эндодермальных клеток с поясками Каспари на антиклинальных поверхностях[10]. Центральный цилиндр корня формируют паренхимные клеткиперицикла[10], которые способны к быстрому делению, и элементы ксилемы и флоэмы. Присутствует и функциональное разграничение корневых зон: зоны деления, элонгации, созревания, а также переходная зона на границе зон инициации и элонгации. С перициклом формируются боковые корни, а с трихобластами эпидермального слоя — корневые волоски[10][11]. Кончик корня покрыт корневым чехликом со специфической морфологией клеток колумеллы.
Кортикальные микротрубочки [править | править вики-текст]
Ацентросомальные кортикальные микротрубочки (КМТ) важны для морфогенеза растений, регуляции клеточного деления и элонгации[12]. Высокодинамическая популяция мембраносвязанных коротких КМТ быстро реориентуеться из интерфазного поперечного положения в продольное при элонгации клетки[13]. Ацентросомальные кортикальные микротрубочки имеют неупорядоченное размещение плюс-концов и обнаруживают динамическую нестабильность, а свободные минус-концы КМТ медленно деполимеризируются, то есть КМТ самоорганизуются гибридным механизмом динамической нестабильности и тредмилинга[1]. Энуклеация происходит по всей поверхности плазматической мембраны[1][13]. Белок SPR1 регулирует динамику и организацию плюс-конца КМТ растений, что сказывается на анизотропном росте клетки[14][15]. Ацентросомальные кортикальные микротрубочки располагаются параллельно целлюлозным микрофибриллам[16], правильная организация КМТ является существенной для нормального синтеза клеточной стенки[17]. Установлено, что КМТ объединяются в узлы, которые часто пересекаются для стабилизации микротрубочек и удержания белков на их поверхности[15].
Латеральные цилиндрические выросты трихобластов, корневые волоски, достигают значительной длины относительно собственной толщины с достаточно постоянным диаметром у Arabidopsis thaliana L. (незрелые ~ 6-10 нм; зрелые — более 1 мм) и характеризуются высокополярной цитоархитектурой[18]. Удлинение их происходит посредством верхушечного роста (англ. tip growth) путем поляризованного экзоцитоза, который отмечается возвратно-фонтанным током цитоплазмы, градиентом цитоплазматического Ca2+, активностью F-актина и смещением клеточного содержимого к верхушке волоска. На ранних стадиях развития корневые волоски 3-дневных проростков Arabidopsis thaliana L. растут со скоростью 0,4 мкм / мин, ускоряясь позже до 1-2,5 мкм / мин[18].
Растительным клеткам присуща организованная популяция кортикальных микротрубочек[7], которая в корневых волосках присутствует на всех уровнях развития[19][20]. При переходе из зачаточного состояния в состояние удлинения, кортикальные микротрубочки верхушки волосков не визуализируются, поскольку появляются эндоплазматические микротрубочки. Кортикальные микротрубочки ориентированы продольно или спирально[20][21]. У кукурузы Zea mays L. и салата Lactuca sativa L. инициация роста корневых волосков связана с реорганизацией популяции КМТ в трихобластах[20][22][23]. Эта популяция контролирует стабильность и направление апикального роста корневых волосков[24][25]. Сравнение четырех стандартных параметров динамической нестабильности КМТ in vivo — уровня ростовой активности, скорости разборки, частоты переходов от разборки к росту («спасение») и наоборот («катастрофа») выявило, что кортикальные микротрубочки (КМТ) молодых корневых волосков являются динамичными, потому что зрелые. Сетка микротрубочек реорганизуется в ответ на меняющиеся параметры окружающей среды и стимулы дифференциации путем варьирования показателей динамической нестабильности[25].
Примечания[править | править вики-текст]
↑ Показывать компактно
1. ↑ Перейти к: 123 Shaw et al., 2003.
2. ↑ Weber and Westermann, 2003.
3. ↑ Ueda, 1999.
4. ↑ Marc et al., 1998.
5. ↑ Перейти к: 12 Wasteneys and Yang, 2004.
6. ↑ Barlow and Balushka, 2000.
7. ↑ Перейти к: 12 Goddard et al., 1994.
8. ↑ Lloyd, 1994.
9. ↑ Sugimoto et al., 2000.
10. ↑ Перейти к: 123 Dolan et al., 1993.
11. ↑ Рейвн и др., 1990.
12. ↑ Dixit et al., 2006.
13. ↑ Перейти к: 12 Yuan et al., 1994.
14. ↑ Dixit and Cyr, 2004.
15. ↑ Перейти к: 12 Lloyd., 1994.
16. ↑ Baskin et al., 2004.
17. ↑ Burk et al., 2006.
18. ↑ Перейти к: 12 Dolan et al., 1994.
19. ↑ Sieberer et al., 2002.
20. ↑ Перейти к: 123 Van Bruaene et al., 2004.
21. ↑ Sieberer et al., 2005
22. ↑ Balusˇka et al., 2000.
23. ↑ Geitmann and Emons, 2000.
24. ↑ Bibikova et al., 1999.
25. ↑ Перейти к: 12 Vassileva et al., 2005.
См. также[править | править вики-текст]
Микротрубочки на Викискладе? |
· Белки, ассоциированные с микротрубочками
· Аксонема
· Жгутик
· Реснички
· Тубулин
· Центросома
Литература[править | править вики-текст]
· Дж. М. Фаллер, Д. Шилдс. Молекулярная биология клетки. Руководство для врачей. Пер. с англ. — М.: «БИНОМ», 2006. — 256 с.
Категория:
· Цитоскелет
https://ru.wikipedia.org/wiki/%D0%9C%D0%B8%D1%82%D0%BE%D0%B7
Митоз
[править | править вики-текст]
Материал из Википедии — свободной энциклопедии
Фазы митоза
Митоз ядер эмбриона Drosophila melanogaster (плодовой мушки)
Мито́з (др.-греч. μίτος — нить) — непрямое деление клетки, наиболее распространенный способрепродукции эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений.[1]
Митоз — один из фундаментальных процессов онтогенеза. Митотическое деление обеспечивает рост многоклеточных эукариот за счёт увеличения популяций клеток тканей. В результате митотического деления клеток меристем увеличивается количество клеток тканей растений.Дробление оплодотворённого яйца и рост большинства тканей у животных также происходит путём митотических делений.[2]
На основании морфологических особенностей митоз условно подразделяется на стадии: профазу, прометафазу, метафазу, анафазу, телофазу. Первые описания фаз митоза и установление их последовательности были предприняты в 70—80-х годах XIX века. В конце 1870-х — начале 1880-хгодов немецкий гистолог Вальтер Флемминг для обозначения процесса непрямого деления клетки ввёл термин «митоз».[3]
Продолжительность митоза в среднем составляет 1—2 часа.[1][4] Митоз клеток животных, как правило, длится 30—60 минут, а растений — 2—3 часа.[5] За 70 лет в теле человека суммарно осуществляется порядка 1014 клеточных делений.[6]
Содержание
[убрать]
· 1 История исследования
· 2 Аппарат клеточного деления
o 2.1 Веретено деления
o 2.2 Микротрубочки
o 2.3 Центромеры и кинетохоры
· 3 Продолжительность митоза
· 4 Фазы митоза
o 4.1 Препрофаза
o 4.2 Профаза
o 4.3 Прометафаза
o 4.4 Метафаза
o 4.5 Анафаза
o 4.6 Телофаза
§ 4.6.1 Цитокинез
· 5 Регуляция митоза
o 5.1 Контрольные точки
o 5.2 Основные регуляторы митоза
§ 5.2.1 Циклин-киназы
§ 5.2.2 Регуляторы активности циклин-киназ
§ 5.2.3 Polo- и aurora-подобные киназы
§ 5.2.4 Активатор анафазы APCCdc20
· 6 Митотический кроссинговер
· 7 Патология митоза
o 7.1 Классификация и общая характеристика различных форм патологии митоза
§ 7.1.1 I. Патология митоза, связанная с повреждением хромосом
§ 7.1.2 II. Патология митоза, связанная с повреждением митотического аппарата
§ 7.1.3 III. Патология митоза, связанная с нарушением цитотомии
· 8 Типы митоза
o 8.1 Варианты классификации митозов
· 9 Происхождение и эволюция митоза
· 10 Эндомитоз
· 11 Значение митоза
· 12 См. также
· 13 Примечания
· 14 Литература
· 15 Ссылки
o 15.1 Иллюстрации
o 15.2 Анимация
o 15.3 Видео
История исследования[править | править вики-текст]
Первые неполные описания, касающиеся поведения и изменения ядер в делящихся клетках, встречаются в работах учёных начала 1870-х годов. В работерусского ботаника Э. Руссова, датируемой 1872 годом, отчётливо описаны и изображены метафазные и анафазные пластинки, состоящие из отдельных хромосом.[7] Годом позже немецкий зоолог А. Шнейдер ещё более отчётливо и последовательно, но, конечно, не совсем полно описал митотическое деление на примере дробящихся яиц прямокишечной турбеллярии Mesostomum. В его работе, в сущности, описаны и проиллюстрированы в правильной последовательности основные фазы митоза: профаза, метафаза, анафаза (ранняя и поздняя). В 1874 году московский ботаник И. Д. Чистяков также наблюдал отдельные фазы клеточного деления в спорах плаунов и хвощей. Несмотря на первые успехи ни Руссову, ни Шнейдеру, ни Чистякову не удалось дать чёткое и последовательное описание митотического деления.[8]
В 1875 году вышли работы, содержащие более детальные описания митозов. О. Бючли дал описание цитологических картин в дробящихся яйцах круглых червей и моллюсков и в сперматогенных клетках насекомых. Э. Страсбургер исследовал митотическое деление в клетках зелёной водоросли спирогиры, в материнских клетках пыльцы лука и в материнских споровых клетках плауна. Ссылаясь на работу О. Бючли и основываясь на собственных исследованиях, Э. Страсбургер обратил внимание на единство процессов клеточного деления в растительных и животных клетках.[9]
К концу 1878 — началу 1879 года появились подробные работы В. Шлейхера (о делении хрящевых клеток амфибий), В. Флемминга (о размножении клеток в разных тканях саламандры и её личинок), П. И. Перемежко (о делении клеток в эпидермисе личинок тритона). В своей работе в 1879 году Шлейхер предложил термин «кариокинез» для обозначения сложных процессов клеточного деления, подразумевая перемещения составных частей ядра.[10]Вальтер Флемминг впервые для обозначения непрямого деления клетки ввёл термин «митоз», который впоследствии стал общепринятым.[3] Также Флеммингу принадлежит окончательная формулировка определения митоза как циклического процесса, завершающегося разделением хромосом между дочерними клетками.[11]
·
Деление клеток по Э. Руссову (1872)
·
Деление клеток по Э. Страсбургеру (1875)
·
Деление клеток по В. Флеммингу (1882)
·
Деление клеток по Э. Б. Уилсону (1900)
В 1880 году О. В. Баранецкий установил спиральное строение хромосом. В ходе дальнейших исследований были развиты представления о спирализации и деспирализации хромосом во время митотического цикла.[11] В начале 1900-х годов хромосомы были идентифицированы в качестве носителей наследственной информации, что в дальнейшем дало объяснение биологической роли митоза, заключающейся в образовании генетически идентичных дочерних клеток.
В 1970-х годах началась расшифровка и детальное изучение регуляторов митотического деления,[12] благодаря серии экспериментов по слиянию клеток, находящихся на разных этапах клеточного цикла. В тех опытах, когда клетку в М-фазе объединяли с клеткой, находящейся в любой из стадий интерфазы (G1, S или G2), интерфазные клетки переходили в митотическое состояние (начиналась конденсация хромосом и распадалась ядерная оболочка).[13] В итоге был сделан вывод, что в цитоплазме митотической клетки присутствует фактор (или факторы), стимулирующий митоз,[14] или, иначе, М-стимулирующий фактор (МСФ, от англ. M-phase-promoting factor, MPF).[15]
Впервые «фактор стимуляции митоза» был открыт в зрелых неоплодотворенных яйцах шпорцевой лягушки, находящихся в М-фазе клеточного цикла. Цитоплазма такого яйца, инъецированная в ооцит, приводила к преждевременному переходу в М-фазу и к началу созревания ооцита (первоначально сокращение MPF означало Maturation Promoting Factor, что переводится как «фактор, способствующий созреванию»). В ходе дальнейших экспериментов были установлены универсальное значение и вместе с тем высокая степень консервативности «фактора стимуляции митоза»: экстракты, приготовленные из митотических клеток весьма разнообразных организмов (млекопитающих, морских ежей, моллюсков, дрожжей), при введении в ооциты шпорцевойлягушки переводили их в М-фазу.[16]
В ходе последующих исследований выяснилось, что фактор, стимулирующий митоз, представляет собой гетеродимерный комплекс, состоящий из белкациклина и зависимой от циклина протеинкиназы. Циклин является регуляторным белком и обнаруживается у всех эукариот. Его концентрация периодически возрастает в течение клеточного цикла, достигая максимума в метафазе митоза. С началом анафазы наблюдается резкое сокращение концентрации циклина, вследствие его расщепления с помощью сложных белковых протеолитических комплексов — протеосом. Зависимая от циклина протеинкиназа представляет собой фермент (фосфорилазу), модифицирующий белки за счёт переноса фосфатной группы от АТФ на аминокислотысерин и треонин. Таким образом с установления роли и структуры основного регулятора митотического деления начались исследования тонких регуляторных механизмов митоза, которые продолжаются до настоящего времени.
Аппарат клеточного деления[править | править вики-текст]
Деление всех эукариотических клеток сопряжено с формированием специального аппарата клеточного деления. Активная роль в митотическом делении клеток зачастую отведена цитоскелетным структурам. Универсальным как для животных, так и для растительных клеток является двухполюсноемитотическое веретено, состоящее из микротрубочек и связанных с ними белков.[17] Веретено деления обеспечивает строго одинаковое распределение хромосом между полюсами деления, в области которых в телофазе образуются ядра дочерних клеток.
Ещё одна не менее важная структура цитоскелета отвечает за разделение цитоплазмы (цитокинез) и, как следствие, за распределение клеточныхорганелл. В животных клетках за цитокинез отвечает сократимое кольцо из актиновых и миозиновых филаментов. В большинстве клеток высших растенийиз-за наличия жёсткой клеточной стенки цитокинез протекает с образованием клеточной пластинки в плоскости между двумя дочерними клетками. При этом область образования новой клеточной перегородки определяется заранее предпрофазным пояском из актиновых микрофиламентов, а поскольку актин участвует также в формировании клеточных септ у грибов, возможно, что он направляет цитокинез у всех эукариот.[18]
Веретено деления [править | править вики-текст]
Основная статья: Веретено деления
Поздняя метафаза митоза в клетке лёгкого тритона(использованы иммунофлуоресцентные красители).[19] Четко просматривается веретено деления, образованное микротрубочками (зелёные), и хромосомы (синие)
Формирование веретена деления начинается в профазе. В его образовании принимают участие полярные тельца (полюса) веретена и кинетохоры хромосом, и те и другие взаимодействуют с микротрубочками — биополимерами, состоящими из субъединиц тубулина. Главным центром организации микротрубочек (ЦОМТ) во многих эукариотических клетках является центросома — скопление аморфного фибриллярного материала, причём в большинстве животных клеток в состав центросом также входят пары центриолей.[20] Во время интерфазы ЦОМТ, как правило, располагающийся вблизи клеточного ядра, инициирует рост микротрубочек, расходящихся к периметру клетки и образующих цитоскелет. В S-фазе материал центросомы удваивается, а в профазе митоза начинается расхождение дочерних центросом. От них в свою очередь «отрастают» микротрубочки, которые удлиняются вплоть до соприкосновения друг с другом, после чего центросомы расходятся. Затем, в прометафазе, после разрушения ядерной мембраны, микротрубочки проникают в область клеточного ядра и взаимодействуют с хромосомами. Две дочерние центросомы теперь называют полюсами веретена.[21]
По морфологии различают два типа митотического веретена: астральный (или конвергентный) и анастральный (дивергентный).[~ 1][22]
Астральный тип митотической фигуры, характерный для животных клеток, отличают благодаря небольшим зонам, на полюсах веретена, в которых сходятся (конвергируют) микротрубочки. Зачастую центросомы, располагающиеся в области полюсов астрального веретена, содержат центриоли. От полюсов деления также расходятся во всех направлениях радиальные микротрубочки, не входящие в состав веретена, а образующие звездчатые зоны — цитастеры.
Анастральный тип митотической фигуры отличается широкими полярными областями веретена, так называемыми полярными шапочками, в их состав не входят центриоли. Микротрубочки при этом расходятся широким фронтом (дивергируют) от всей зоны полярных шапочек. Этот тип митотической фигуры также отличает отсутствие цитастеров. Анастральный тип митотического веретена наиболее характерен для делящихся клеток высших растений, хотя иногда наблюдается и в некоторых клетках животных.
Микротрубочки [править | править вики-текст]
Основная статья: Микротрубочки
Микротрубочки — динамичные структуры, принимающие активное участие в построении веретена деления во время митоза. Химически они представляют собой биополимеры, состоящие из субъединиц белка тубулина. Количество микротрубочек в клетках различных организмов может значительно отличаться. В метафазе веретено деления в клетках высших животных и растений может содержать до нескольких тысяч микротрубочек, тогда как у некоторых грибов их всего около 40.[21]
Митотические микротрубочки веретена деления «динамически нестабильны». Их «положительные» или «плюс-концы», расходящиеся во всех направлениях от центросом резко переходят от равномерного роста к стремительному укорочению, при котором часто деполимеризуется вся микротрубочка. Согласно этим данным образование митотического веретена объясняется селективной (выборочной) стабилизацией микротрубочек взаимодействующих в экваториальной области клетки с кинетохорами хромосом и с микротрубочками, идущими от противоположного полюса деления. Данная модель объясняет характерную двухполюсную фигуру митотического веретена.[21]
Центромеры и кинетохоры [править | править вики-текст]
Основные статьи: Центромера, Кинетохор
Центромеры — специализированные последовательности ДНК, необходимые для связывания с микротрубочками веретена деления и для последующего расхождения хромосом. В зависимости от локализации различают несколько типов центромер. Для голоцентрических центромер характерно образование связей с микротрубочками веретена по всей длине хромосомы (некоторые насекомые, нематоды, некоторые растения). В противоположность голоцентрическим моноцентрические центромеры служат для связи с микротрубочками в единственной области хромосомы.[22]
В центромерной области обычно располагаются кинетохоры хромосом — сложные белковые комплексы, морфологически очень сходные по своей структуре для различных групп эукариот, как, например, для диатомовых водорослей, так и для человека.[23] Обычно на каждую хроматиду (хромосому) приходится по одному кинетохору. На электронных микрофотографиях кинетохор обычно выглядит как пластинчатая трехслойная структура.[24] Порядок слоев следующий: внутренний плотный слой, примыкающий к телу хромосомы; средний рыхлый слой; внешний плотный слой, от которого отходит множество фибрилл, образуя т. н. фиброзную корону кинетохора.
К основным функциям кинетохора относят: закрепление микротрубочек веретена деления, обеспечение движения хромосом во время митоза при участии микротрубочек, связывание между собой сестринских хроматид и регуляцию их последующего разделения в анафазе митоза.[25] Минимально достаточно одной микротрубочки (например, для дрожжей) ассоциированной с кинетохором, чтобы обеспечить движение хромосомы. Однако с одним кинетохором могут быть связаны целые пучки, состоящие из 20—40 микротрубочек (например, у высших растений или человека), чтобы обеспечить расхождение хромосом к полюсам клетки.[25][24]
Продолжительность митоза[править | править вики-текст]
Временной ход митоза и цитокинеза, типичный для клетки млекопитающего. Точные цифры для разных клеток различны. Цитокинез берёт своё начало в анафазе и завершается, как правило,
к окончанию телофазы
Собственно митоз зачастую протекает сравнительно быстро. Средняя продолжительность составляет 1—2 часа,[1][4]что занимает всего около 10 % времени клеточного цикла. К примеру, у делящихся клеток меристемы корнейинтерфаза составляет 16—30 часов, а митоз длится всего 1—3 часа. Для эпителиальных клеток кишечника мышиинтерфазный период составляет порядка 20—22 часов, а митоз продолжается в течение 1 часа.[26] В клеткахживотных митоз обычно протекает быстрее и длится в среднем 30—60 минут, в то время как в растительных клетках средняя продолжительность митоза составляет 2—3 часа.[5] Известны исключения с противоположными показателями. К примеру, в животных клетках продолжительность митоза может достигать 3,8 часов (эпидермисмыши). Или же встречаются растительные объекты с длительностью митоза в 5 минут (Chilomonas).[27] Наиболее интенсивно митоз протекает в эмбриональных клетках (10—40 минут в дробящихся яйцеклетках).
Длительность митоза находится в зависимости от целого ряда факторов: размеров делящейся клетки, её плоидности, числа ядер. Частота клеточных делений также зависит от степени дифференцировки клеток и специфики выполняемых функций. Так, нейроны или клетки скелетной мышцы человека не делятся совсем; клетки печениобычно делятся раз в один или два года, а некоторые эпителиальные клетки кишечника делятся чаще, чем 2 раза в сутки.[28]
Темп клеточного деления зависит также от условий окружающей среды, в частности, от температуры. Повышение температуры окружающей среды в физиологических пределах повышает скорость митоза, что может быть объяснено обычной закономерностью кинетики химических реакций.[29]
Фазы митоза[править | править вики-текст]
Фаза клеточного цикла, соответствующая делению клетки, называется М-фазой (от слова «митоз»). М-фазу условно подразделяют на шесть стадий, постепенно и непрерывно переходящих одна в другую.[20][26] Первые пять — профаза, прометафаза (метакинез), метафаза, анафаза и телофаза (или цитотомия) — составляют митоз,[~ 2] а берущий своё начало в анафазе процесс разделения цитоплазмы клетки, или цитокинез, протекает вплоть до завершения митотического цикла и, как правило, рассматривается в составе телофазы.
Длительность отдельных стадий различна и варьируется в зависимости от типа ткани, физиологического состояния организма, внешних факторов. Наиболее продолжительны стадии, сопряженные с процессами внутриклеточного синтеза: профаза (2—270 минут) и телофаза (1,5—140 минут). Наиболее быстротечны фазы митоза, в ходе которых происходит движение хромосом: метафаза (0,3—175 минут) и анафаза (0,3—122 минуты). Непосредственно процесс расхождения хромосом к полюсам обычно не превышает 10 минут.[30]
Препрофаза [править | править вики-текст]
Деление растительной клетки с крупной центральной вакуолью:
1) Клетка с крупной центральной вакуолью и ядром, оттеснённым на периферию клетки. 2) Полоски цитоплазмы рассекают вакуоль, обеспечивая перемещение ядра к центру клетки. 3) и 4) Полоски цитоплазмы объединяются в плоскости деления клетки с образованием фрагмосомы. 5) На этапе цитокинеза в области фрагмосомы образуется фрагмопласт и новая клеточная стенка.
Основная статья: Препрофаза
Начальные стадии митоза растительной клетки:
1) и 2) Оформление препрофазного кольца.
3) Нуклеация микротрубочек вокруг ядра.
4) Препрофазное кольцо начинает исчезать.
5) Микротрубочки вокруг ядра образуют «профазное веретено».
6) Ядерная мембрана распадается и микротрубочки веретена направляются к хромосомам.
Условные обозначения: N — ядро; V — вакуоль; PPB — препрофазное кольцо; MTN — начало скопления микротрубочек; NEB — распад ядерной оболочки; микротрубочки окрашены зелёным цветом
Препрофаза — редко используемый термин[31] для обозначения дополнительной стадии митоза растительной клетки. К основным событиям препрофазы можно отнести: оформление препрофазного кольца, образование фрагмосомы и начало нуклеации микротрубочек вокруг клеточного ядра. Несмотря на наличие термина «препрофаза» перечисленные события чаще рассматриваются в составе фазы G2[31][32][33] или в составе профазы.[31][34]
В клетках богатых вакуолями в ходе препрофазы образуетсяфрагмосома — одна из структур, определяющих плоскость деления растительной клетки. Фрагмосома представляет собой слой цитоплазмы, пересекающий вакуоль в плоскости клеточного деления.[35] Ядро в клетках с крупной центральной вакуолью обычно располагается на периферии. Во время препрофазы оно перемещается в область фрагмосомы. В ходе перемещения ядра вакуоль рассекается полосками цитоплазмы, содержащими элементы цитоскелета. Во фрагмосоме также образуется митотическое веретено. Во время цитокинеза в области фрагмосомы формируется фрагмопласт и новая клеточная стенка.
Одновременно с фрагмосомой образуется препрофазное кольцо, и обе структуры располагаются в одной плоскости.[36] Препрофазное кольцо — это кольцеобразное скопление микротрубочек и актиновых филаментов вблизи клеточной мембраны в плоскости деления растительной клетки. Ядро располагается в центре препрофазного кольца и связано с ним радиально расходящимися микротрубочками. Внешне данная структура напоминает колесо с ободом и спицами из микротрубочек и актиновых филаментов, а также с ядром на месте втулки.[36] Структура кольца также обогащена элементами ЭПР и везикулами аппарата Гольджи.
Препрофазное кольцо формируется перед профазой митоза. После начала профазы микротрубочки кольца деполимеризуются и далее участвуют в образовании веретена деления. Функции препрофазного кольца пока не ясны. Однако подмечено, что цитокинез растительной клетки происходит в плоскости определённой положением препрофазного кольца.[31] При симметричном делении кольцо формируется в середине, а при асимметрическом делении образуется ближе к одному концу клетки.[36]
Профаза [править | править вики-текст]
Основная статья: Профаза
К основным событиям профазы относят конденсацию хромосом внутри ядра и образование веретена деления в цитоплазме клетки.[37] Распад ядрышка в профазе является характерной, но не обязательной для всех клеток особенностью.[38]
Условно за начало профазы принимается момент возникновения микроскопически видимых хромосом вследствие конденсации внутриядерногохроматина. Уплотнение хромосом происходит за счёт многоуровневой спирализации ДНК. Данные изменения сопровождаются повышением активностифосфорилаз, модифицирующих гистоны, непосредственно участвующие в компоновке ДНК. Как следствие, резко снижается транскрипционная активность хроматина, инактивируются ядрышковые гены, большая часть ядрышковых белков диссоциирует. Конденсирующиеся сестринские хроматиды в ранней профазе остаются спаренными по всей своей длине с помощью белков-когезинов, однако к началу прометафазы связь между хроматидами сохраняется лишь в области центромер. К поздней профазе на каждой центромере сестринских хроматид формируются зрелые кинетохоры необходимые хромосомам для присоединения к микротрубочкам веретена деления в прометафазе.[39]
Профаза
Наряду с процессами внутриядерной конденсации хромосом в цитоплазме начинает формироваться митотическое веретено — одна из главных структур аппарата клеточного деления, ответственная за распределение хромосом между дочерними клетками. В образовании веретена деления у всех эукариотических клеток принимают участие полярные тельца (центросомы), микротрубочки и кинетохоры хромосом.[22]
С началом формирования митотического веретена в профазе сопряжены разительные изменения динамических свойств микротрубочек. Время полужизни средней микротрубочки уменьшается примерно в 20 раз от 5 минут (в интерфазе) до 15 секунд.[21][39] Однако скорость их роста увеличивается примерно в 2 раза по сравнению с теми же интерфазными микротрубочками.[39] Полимеризующиеся плюс-концы («+»-концы) являются «динамически нестабильными» и резко переходят от равномерного роста к быстрому укорочению, при котором часто деполимеризуется вся микротрубочка.[21] Примечательно, что для правильного функционирования митотического веретена необходим определенный баланс между процессами сборки и деполимеризации микротрубочек, так как ни стабилизированные, ни деполимеризованные микротрубочки веретена не в состоянии перемещать хромосомы.[~ 3]
Наряду с наблюдаемыми изменениями динамических свойств микротрубочек, слагающих нити веретена, в профазе закладываются полюса деления. Реплицированные в S-фазе центросомы расходятся в противоположных направлениях за счёт взаимодействия полюсных микротрубочек, растущих навстречу друг другу. Своими минус-концами («-»-концами) микротрубочки погружены в аморфное вещество центросом, а процессы полимеризациипротекают со стороны плюс-концов, обращенных к экваториальной плоскости клетки. При этом вероятный механизм расхождения полюсов объясняется следующим образом: динеино-подобные белки ориентируют в параллельном направлении полимеризующиеся плюс-концы полюсных микротрубочек, акинезино-подобные белки в свою очередь расталкивают их в направлении к полюсам деления.[40]
Параллельно конденсации хромосом и формированию митотического веретена, во время профазы происходит фрагментация эндоплазматического ретикулума, который распадается на мелкие вакуоли, расходящиеся затем к периферии клетки. Одновременно рибосомы теряют связи с мембранами ЭПР. Цистерны аппарата Гольджи также меняют свою околоядерную локализацию, распадаясь на отдельные диктиосомы, без особого порядка распределенные в цитоплазме.[41]
Прометафаза [править | править вики-текст]
Основная статья: Прометафаза
Прометафаза
Окончание профазы и наступление прометафазы, как правило, знаменуется распадом ядерной мембраны.[37] Целый ряд белков ламины фосфорилируется, вследствие чего ядерная оболочка фрагментируется на мелкие вакуоли, а поровые комплексы исчезают.[42] После разрушения ядерной мембраны хромосомы без особого порядка располагаются в области ядра. Однако вскоре все они приходят в движение.
В прометафазе наблюдается интенсивное, но беспорядочное перемещение хромосом. Поначалу отдельные хромосомы стремительно дрейфуют к ближайшему полюсу митотического веретена со скоростью, достигающей 25мкм/мин.[42] Вблизи полюсов деления повышается вероятность взаимодействия новосинтезированных плюс-концов микротрубочек веретена с кинетохорами хромосом.[43][42] В результате такого взаимодействия кинетохорные микротрубочки (связанные с кинетохором) стабилизируются от спонтанной деполимеризации, а их рост отчасти обеспечивает отдаление соединенной с ними хромосомы в направлении от полюса к экваториальной плоскости веретена. С другой стороны хромосому настигают тяжи микротрубочек, идущие от противоположного полюса митотического веретена. Взаимодействуя с кинетохором, они также участвуют в движении хромосомы. В результате сестринские хроматиды оказываются связанными с противоположными полюсами веретена.[44] Усилие, развиваемое микротрубочками от разных полюсов, не только стабилизирует взаимодействие этих микротрубочек с кинетохорами, но также, в конечном счёте, приводит каждую хромосому в плоскостьметафазной пластинки.[45]
В клетках млекопитающих прометафаза протекает, как правило, в течение 10—20 минут.[43] В нейробластах кузнечика данная стадия занимает всего 4 минуты, а в эндосперме Haemanthus и в фибробластах тритона — около 30 минут.[46] В дрожжевых клетках невозможно чётко разграничить стадии профазы и прометафазы по причине сохранения ядерной оболочки в процессе деления. Аналогичным образом, частичное или более позднее разрушение ядерной мембраны затрудняет разграничение стадий профазы и прометафазы в клетках Drosophila и C. elegans. В подобных случаях для описания всех ранних событий митотического деления используется обобщающий термин «профаза».[37]
Метафаза [править | править вики-текст]
Основная статья: Метафаза
Метафаза
В завершении прометафазы хромосомы располагаются в экваториальной плоскости веретена (а не всей клетки[47]) примерно на равном расстоянии от обоих полюсов деления, образуя метафазную (экваториальную) пластинку. Морфология метафазной пластинки в клетках животных, как правило, отличается упорядоченным расположением хромосом: центромерные участки обращены к центру веретена, а плечи — к периферии клетки (фигура «материнской звезды»). В растительных клетках хромосомы зачастую лежат в экваториальной плоскости веретена без строгого порядка.[48][49] В дрожжевых клетках хромосомы тоже не выстраиваются в экваториальной плоскости, а располагаются произвольно вдоль волокон веретена деления.[37]
Метафаза занимает значительную часть периода митоза, и отличается относительно стабильным состоянием. Все это время хромосомы удерживаются в экваториальной плоскости веретена за счёт сбалансированных сил натяжения кинетохорных микротрубочек, совершая колебательные движения с незначительной амплитудой в плоскости метафазной пластинки.[50]
В метафазе, также как и в течение других фаз митоза, продолжается активное обновление микротрубочек веретена путём интенсивной сборки и деполимеризации молекул тубулина. Несмотря на некоторую стабилизацию пучков кинетохорных микротрубочек, происходит постоянная переборка межполюсных микротрубочек, численность которых в метафазе достигает максимума.[48]
К окончанию метафазы наблюдается чёткое обособление сестринских хроматид, соединение между которыми сохраняется лишь в центромерных участках. Плечи хроматид располагаются параллельно друг другу, и становится отчетливо заметной разделяющая их щель.[48]
Анафаза [править | править вики-текст]
Основная статья: Анафаза
Анафаза
Анафаза — самая короткая стадия митоза, которая начинается внезапным разделением и последующим расхождением сестринских хроматид в направлении противоположных полюсов клетки.[51] Хроматиды расходятся с равномерной скоростью достигающей 0,5—2 мкм/мин.[1][52] (0,2—5 мкм/мин.[53]), при этом они часто принимают V-образную форму. Их движение обусловлено воздействием значительных сил, оценочно 10−5 дин на хромосому, что в 10 000 раз превышает усилие, необходимое для простого продвижения хромосомы через цитоплазму с наблюдаемой скоростью.[54]
Как правило, расхождение хромосом в анафазе состоит из двух относительно независимых процессов называемых анафазой А и анафазой В.
Анафаза А характеризуется расхождением сестринских хроматид к противоположным полюсам деления клетки.[37] За их движение при этом отвечают те же силы, что ранее удерживали хромосомы в плоскости метафазной пластинки. Процесс расхождения хроматид сопровождается сокращением длины деполимеризующихся кинетохорных микротрубочек. Причем их распад наблюдается преимущественно (на 80 %[55]) в области кинетохоров, со стороны плюс-концов (ранее, с начала профазы и вплоть до начала анафазы, на плюс-концах преобладали процессы сборки субъединиц тубулина).[54] Вероятно, деполимеризация микротрубочек у кинетохоров либо в области полюсов деления является необходимым условием для перемещения сестринских хроматид, так как их движение прекращается при добавлении таксола или тяжёлой воды (D2O), оказывающих стабилизирующее воздействие на микротрубочки. Механизм, лежащий в основе расхождения хромосом в анафазе А, пока остается неизвестным.[~ 4][54]
Во время анафазы В расходятся сами полюса деления клетки,[37] и, в отличие от анафазы А, данный процесс происходит за счёт сборки полюсных микротрубочек со стороны плюс-концов. Полимеризующиеся антипараллельные нити веретена при взаимодействии отчасти и создают расталкивающее полюса усилие. Величина относительного перемещения полюсов при этом, также как и степень перекрывания полюсных микротрубочек в экваториальной зоне клетки сильно варьирует у особей разных видов.[56] Помимо расталкивающих сил, на полюса деления воздействуют тянущие силы со стороны астральных микротрубочек, которые создаются в результате взаимодействия с динеино-подобными белками на плазматической мембране клетки.[57]
Последовательность, продолжительность и относительный вклад каждого из двух процессов, слагающих анафазу, могут быть крайне различны. Так в клетках млекопитающих анафаза В начинается сразу вслед за началом расхождения хроматид к противоположным полюсам и продолжается вплоть до удлинения митотического веретена в 1,5—2 раза по сравнению с метафазным. В некоторых других клетках (например, дрожжевых) анафаза В начинается только после того как хроматиды достигают полюсов деления. У некоторых простейших в процессе анафазы В веретено удлиняется в 15 раз по сравнению с метафазным.[51] В растительных клетках анафаза В отсутствует.[57]
Телофаза [править | править вики-текст]
Основная статья: Телофаза
Телофаза
Телофаза (от греч. telos — конец) рассматривается как заключительная стадия митоза; за её начало принимается момент остановки разделённых сестринских хроматид у противоположных полюсов деления клетки.[57] В ранней телофазе наблюдается деконденсация хромосом и, следовательно, увеличение их в объёме. Вблизи сгруппированных индивидуальных хромосом начинается слияние мембранных пузырьков, что дает начало реконструкции ядерной оболочки. Материалом для построения мембран новообразованных дочерних ядер служат фрагменты изначально распавшейся ядерной мембраны материнской клетки, а также элементы эндоплазматического ретикулума.[58] При этом отдельные пузырьки связываются с поверхностью хромосом и сливаются воедино. Постепенно восстанавливается наружная и внутренняя ядерные мембраны, восстанавливаются ядерная ламина иядерные поры. В процессе восстановления ядерной оболочки дискретные мембранные пузырьки, вероятно, соединяются с поверхностью хромосом без распознавания специфических последовательностей нуклеотидов, так как в результате проведенных экспериментов было выявлено, что восстановление ядерной мембраны происходит вокруг молекул ДНК, заимствованных у любого организма, даже у бактериального вируса.[59] Внутри заново сформировавшихся клеточных ядер хроматин переходит в дисперсное состояние, возобновляется синтез РНК, и становятся различимыми ядрышки.
Параллельно с процессами образования ядер дочерних клеток в телофазе начинается и заканчивается разборка микротрубочек веретена деления. Деполимеризация протекает в направлении от полюсов деления к экваториальной плоскости клетки, от минус-концов к плюс-концам. При этом дольше всего сохраняются микротрубочки в средней части веретена деления, которые образуют остаточное тельце Флеминга.[60]
Цитокинез [править | править вики-текст]
Основная статья: Цитокинез
Деление клетки инфузориизавершается цитокинезом
Окончание телофазы преимущественно совпадает с разделением тела материнской клетки — цитокинезом(цитотомией).[61][62] При этом образуются две или более дочерние клетки. Процессы, ведущие к разделению цитоплазмы, берут свое начало ещё в середине анафазы и могут продолжаться после завершения телофазы. Митоз не всегда сопровождается разделением цитоплазмы, поэтому цитокинез не классифицируется в качестве отдельной фазы митотического деления и обычно рассматривается в составе телофазы.[~ 5]
Различают два основных типа цитокинеза: деление поперечной перетяжкой клетки (наиболее характерно для клеток животных) и деление путём образования клеточной пластинки (свойственно растениям в связи с наличием жёсткойклеточной стенки). Плоскость деления клетки детерминируется положением митотического веретена и проходит под прямым углом к длинной оси веретена.[63]
При делении поперечной перетяжкой клетки место разделения цитоплазмы закладывается предварительно ещё в период анафазы, когда в плоскости метафазной пластинки под мембраной клетки возникает сократимое кольцо из актиновых и миозиновых филаментов. В дальнейшем, вследствие активности сократимого кольца, образуется борозда деления, которая постепенно углубляется вплоть до полного разделения клетки. По окончании цитокинеза сократимое кольцо полностью распадается, а плазматическая мембрана стягивается вокруг остаточного тельца Флеминга, состоящего из скопления остатков двух групп полюсных микротрубочек, тесно упакованных вместе с материалом плотного матрикса.[64]
Деление путём образования клеточной пластинки начинается с перемещения мелких ограниченных мембраной пузырьков по направлению к экваториальной плоскости клетки. Здесь они сливаются, образуя дисковидную, окружённую мембраной структуру — раннюю клеточную пластинку. Мелкие пузырьки происходят в основном из аппарата Гольджи и перемещаются к экваториальной плоскости вдоль остаточных полюсных микротрубочек веретена деления, образующих цилиндрическую структуру, называемую фрагмопластом. По мере расширения клеточной пластинки микротрубочки раннего фрагмопласта попутно перемещаются к периферии клетки, где за счёт новых мембранных пузырьков продолжается рост клеточной пластинки вплоть до её окончательного слияния с мембраной материнской клетки. После окончательного разделения дочерних клеток в клеточной пластинке откладываютсямикрофибриллы целлюлозы, завершая образование жёсткой клеточной стенки.[65]
Регуляция митоза[править | править вики-текст]
Основными регулято́рными механизмами митоза являются процессы фосфорилирования и протеолиза[66]. Обратимые реакции фосфорилирования и дефосфорилирования обеспечивают протекание обратимых событий митоза, таких как сборка/распад веретена деления или распад/восстановление ядерной оболочки. Протеолиз лежит в основе необратимых событий митоза, таких как разделение сестринских хроматид в анафазе или разрушение митотических циклинов на поздних стадиях митоза.
Контрольные точки [править | править вики-текст]
Общая схема регуляции митоза[67]
Рассматривая вопрос регуляции митоза, можно условно выделить два периода митотического деления: от начала профазы до анафазы, и далее, от анафазы до конца телофазы[68]. Каждый из двух обозначенных периодов начинается с прохождения контрольной точки клеточного цикла.
Первой контрольной точкой является переход из фазы G2 к M-фазе. Главным условием для преодоления контрольной точки G2/M является завершённая репликация ДНК: старт митотического деления блокируется у большинства эукариот при повреждениях или неоконченной репликации ДНК. События от начала профазы и до окончания метафазы инициируются и протекают при участии белковых комплексов, состоящих из митотических циклинов и циклин-зависимых киназ (англ. M-Cdk).
Вторая контрольная точка служит разделительным барьером на границе метафазы и анафазы. На данном этапе критичным показателем является состояние веретена деления: вступление в анафазу у всех эукариот блокируется в случае наличия дефектов веретена. Ключевым активатором событий анафазы является убиквитинлигаза APCCdc20[67].
Схема активации циклин-зависимой киназы: 1 — неактивная циклин-зависимая протеинкиназа; 2 — циклин; 3 — активный циклин-киназный комплекс
Принцип положительной обратной связи при активации митоза: путём фосфорилирования циклин-киназный комплекс циклин B — Cdk1 стимулирует его собственные активаторы семейства Cdc25 и подавляет работу его ингибиторов семейства Wee1. В качестве возможных инициаторов петли обратной связи указаны фосфатаза Cdc25B
и комплекс циклин A — Cdk.[69]
Активность основных регуляторов митоза на стадии профазы (на примере позвоночных). Синим цветом обозначен график активности ингибиторов семейства Wee1 (Wee1, Myt1). Зелёным цветом обозначен график активности фосфатаз семейства Cdc25 (Cdc25A, Cdc25C). График активности комплекса циклин B-Cdk1 обозначен красным цветом. Отдельно фиолетовым цветом обозначен график активности
фосфатазы Cdc25B.[70]
Основные регуляторы митоза [править | править вики-текст]
Циклин-киназы [править | править вики-текст]
Ключевыми активаторами митоза, обеспечивающими инициацию событий профазы—метафазы, являются циклин-киназные комплексы (англ. M-Cdk). Данные комплексы представляют собой гетеродимеры, состоящие из двух субъединиц: регуляторной — митотического циклина (англ. M cyclin) и каталитической — циклин-зависимой киназы (англ. Cdk — cyclin-dependent kinase).
В регуляцию митоза у всех эукариот вовлечена циклин-зависимая киназа Cdk1,[71] которая представляет собой фермент (фосфорилазу), модифицирующий белки за счёт переноса фосфатной группы от АТФ на аминокислоты серин и треонин. Концентрация Cdk1 постоянна на протяжении всего клеточного цикла,[72] поэтому активность циклин-зависимой киназы в процессе митоза зависит главным образом от её соединения с митотическим циклином. Концентрация митотических циклинов увеличивается по мере приближения к митозу и достигает максимума в метафазе. Различным таксонам свойственны различные митотические циклины. Так, у почкующихся дрожжей в регуляцию митоза вовлечены четыре циклина Clb1, 2, 3 и 4; у дрозофилы — циклины A, B, B3; у позвоночных — циклин B.[73]
Регуляторы активности циклин-киназ [править | править вики-текст]
Дата добавления: 2015-07-14; просмотров: 85 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
От 25 до 28 мг: 500 тг. | | | Комментарии |