Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Порядок расчета. 1. В качестве сужающего устройства выбираем диафрагму (рис

Читайте также:
  1. II. Порядок подачи заявления о выборе (замене) страховой медицинской организации застрахованным лицом
  2. II. Порядок формирования контрактной службы
  3. II. Порядок формирования финансовых результатов, учитываемых при налогообложении прибыли
  4. II. Структура Переліку і порядок його застосування
  5. III. Порядок защиты дипломной работы
  6. III. Порядок оказания услуг по перевозкам пассажиров и хранению ручной клади
  7. III. Порядок оказания услуг по перевозке пассажиров и хранению ручной клади

1. В качестве сужающего устройства выбираем диафрагму (рис. 10, а) из нержавеющей стали марки Х17. В качестве вторичного измерительного прибора выбран сильфонный самопишущий дифманометр типа ДСС-734 класса точности 1,5 с предельным перепадом давления Δ рпр = 2500 кгс/м2, имеющий дополнительную запись давления класса точности 1,0 с предельным давлением рпр = 25 кгс/см2. Для записи температуры газа выбран самопишущий манометрический термометр типа ТЖ класса точности 1,0 с пре­делом измерения от —50 до 50 °С.

2. Определяем абсолютное давление газа перед сужающим устройством по формуле:

p1 = p1 изб + pб = 1,2+0,1 = 1,3 МПа=13 кгс/см2

3. При ρн =0,727 кг/м3 коэффициент сжимаемости природного газа будет 0,974.

4. Определяем вспомогательный коэффициент С по формуле:

5. При известном коэффициенте С =11,530 и предельном перепаде давления Δ рпр = 2500 кгс/м2 по фрагменту номограммы, рис. 11, определяем численное значение модуля диафрагмы m и необратимые поте­ри давления на диафрагме рп.

Для получения значения модуля т и потерь давления рп откладываем на ось абсцисс номограммы С =11,530 и восстанавливаем перпендикуляр до пере­сечения в точке А с кривой 1, соответствующей предельному перепаду давления Δ рпр =2500 кгс/м2. Наклонная прямая 2, проходящая через точку А, соответст­вует значению искомого модуля диафрагмы m =0,356. Проведя из точки А горизонтальную прямую до пересечения с осью ординат, получаем значение необра­тимых потерь давления рп на диафрагме, равное 0,16 кгс/см2.

6. Рассчитаем минимальное число Рейнольдса Remin, соот­ветствующее минимальному расходу газа Qн. min =30000 м3/ч, т. е.

Remin = 0,0361 Qн. minρн /(mах) = 0,0361·30000 ×

× 0,727/(400·1,13·10-6) = 1,74·106.

Такое значение минимального удовлетворяет условию.

7. Используем найденные значения модуля m =0,356 и минимального числа Рейнольдса Remin = 1,74·106 для определения коэффициента расхода газа при угловом способе отбора давлений, получаем

αу = (1/ ) [0,5959 + 0,0312 m 1,05—0,1840 m 4 +

+ 0,0029 m 1,25 (106/ Remin)0,75] = (1/ ) {0,5959 +

+ 0,0312·0,3561,05— 0,1840·0,3564 +0,0029·0,3561,25 ×

× [106/(1,74-106)]0,75} = 1,0713(0,5959 + 0,0105 —

— 0,0029 + 0,0001310) = 0,6466.

Рис. 11. Фрагмент номограммы для С = fpпр, т, рп).

 

8. Определяем значение коэффициента адиабаты х в рабочих условиях при p1 = 13 кгс/см2 и Т =278 К:

х = 1,29 + 0,704·10-6 [2575 + (346,23 — Т)2] р1 = 1,29 +

+ 0,704· 10-6 [2575 + (346,23 — 278)2] · 13 = 1,29 + 0,088 = 1,378.

9. Рассчитаем предварительное значение поправочного множителя на расширения ε при известном предварительном значении модуля m =0,356, коэффициенте адиабаты х = 1,378, предельном перепаде давления Δ рпр =0,25 кгс/см2 и давлении p1 = 13 кгс/см2:

ε = 1 — (0,41 + 0,35m2) Δ рпр /(x Р1) = 1 — (0,41 + 0,35 · 0,3562) ×

× 0,25/(1,378·13)= 1 — 0,454·0,0140 = 0,99.

10. Вычисляем вспомогательный коэффициент при С = 11,530, ε =0,99 и Δ рпр =2500 кгс/м2:

= С/(ε ) = 11,530/(0,99 ) = 0,2329.

11. Определяем уточненное значение модуля m при =0,2329 и α =0,6466:

m = mα/α = 0,2329/0,6466 = 0,36.

12. При новом уточненном значении m =0,36 коэффициент расхода α равен

α = (1/ ) {0,5959 + 0,0312·0,361,05—0,1840·0,364+

+0,0029·0,361,25 [106/(1,74·106)]0,75} = 1,0715(0,5959 + 0,01067 —

— 0,00309 + 0,0001324) = 0,6468.

13. При m =0,36 диаметр отверстия диафрагмы

d = = 400 = 240 мм.

14. Подставляем в формулу найденные значения d =240 мм, α =0,6468, ε = 0,99, Δ рпр =2500 кгс/м2, p1 = 13 кгс/см2, T1 = 278 К, ρн =0,727 кг/м3 и Z =0,974:

Qн.пр = 0,2109αεd2 = 0,2109·0,6468·0,99·2402 ×

× = 7778,64·12,85 = 99955,6 м3/ч.

15. Находим погрешность расчета максимального расхода газа Δ Q по фор­муле:

Погрешность расчета Δ Q =0,04 % <0,2 %, что вполне допустимо. Здесь Qрасч — уточненное расчетное значение максимального (предельного) расхода газа, м3/ч. Так как погрешность расчета 0,04 % вполне допустима, окончательно принимаем следующие параметры измерительной диафрагмы. Диаметр отверстия диафрагмы d =240 мм, коэффициент расхода α =0,6468 и модуль m =0,36.

16. Рассчитаем максимальное число Рейнольдса Remax, соответствующее предельному (максимальному) расходу газа Qн.пр = 100000 м3/ч:

Remax = 0,0361 Qн.пр ρн /() = 0,0361·100000×

×0,727/(400·1,13·10-6) =2,64·106.

17. Принимаем толщину диска диафрагмы Е =0,05 D. Тогда Е =0,05-400=20 мм. Ширину цилиндрической части отверстия диафрагмы ец (рис. 9.10, а), которая затем переходит в коническую выходную часть, выбираем из соотношения 0,005 D 0,02 D. Приняв ец =0,02 D, получаем, что ец =0,02∙400=8 мм. Угол скоса конической выходной части диафрагмы q должен быть не менее 30 и не более 45°. Принимаем угол скоса .

18. Ширина кольцевой щели c, соединяющей камеры отбора давлений с трубопроводом, не должна превышать 0,03 D при т ≤ 0,45. В этом случае

19. Размеры сечений камер для отбора давлений a и b выбираем из условия:

Приняв b = 1,5 a, получаем, что а ≥ 70,8 мм, а b ≥ 1,5 а ≥ мм. Толщина h стенки корпуса камеры должна быть не менее 2 с, т. е.

20. Определяем длины прямых участков измерительного трубопровода перед диафрагмой L 1 и L2 и после диафрагмы l1 и l2 исходя из заданной погрешности . Перед диафрагмой согласно условию находится два местных сопротивления. Наиболее удаленное от диафрагмы — входной патрубок с двумя коленами, расположенными в разных плоскостях, а ближайшее к диафрагме — входной кран. За диафрагмой находится гильза термометра и выходной кран. Определяем минимальное расстояние L2/D между входным патрубком с группой колен, расположенных в разных плоскостях и входным краном. При указанном расположении местных сопротивлений получаем, что L2/D= 30. При D =400 мм = 0,4 м

.

Минимальное расстояние L2/D между входным краном и диафрагмой, при модуле m =0,36 и заданной погрешности δаL = 0,3 % равно 20. При L2/D =20

.

Расстояние l1 от выходного торца диафрагмы до гильзы термометра должно быть более 2 D, т. е.

Определяем минимальное расстояние l2 от выходного торца диафрагмы до выходного крана. При m =0,36

С учетом выполненных расчетов длины прямых участков измерительного трубопровода (рис. 9.10, а) имеют следующие размеры: L 1 =8 м, L2 =12 м, l1 =0,8 м и l2 =2,8 м.

Расчет погрешности измерения расхода газа. Для расчета погрешности измерения расхода сухого газа выпишем исходные данные, полученные при расчёте сужающего устройства (диафрагмы), а также определим ряд дополнительных данных. При диаметре трубопровода D = 400 мм, модуле m =0,36 и минимальном числе Рейнольдса Remin =1,74∙106, исходя из условий, указанных в настоящей главе, можно принять, что и . При измерении фактических размеров измерительного трубопровода и диафрагмы было получено, что высота уступа внутри прямого участка трубопровода перед диафрагмой при стыковке труб h =1 мм на расстоянии l =2 м от диафрагмы, а эксцентриситет оси отверстия диафрагмы и измерительного трубопровода е =2 мм. При выбранных длинах прямых участков перед диафрагмой L 1=8 м и L 2=12 м и модуле m =0,36 значение погрешности δаL = 0,3 %. При высоте уступа L =1 мм и диаметре D =400 мм находим, что:

При меньше 0,3% можно принять, что δаL =0. При эксцентриситете е =2 мм проверяем выполнение условий:

,

.

Из указанных условий видно, что фактическое значение эксцентриситета е =2мм удовлетворяет условию, в связи с чем, погрешность от влияния эксцентриситета . Подставив полученные данные в формулу, получаем погрешность определения коэффициента расхода а:

Для определения погрешности измерения расхода газа предварительно необходимо найти погрешности . Погрешность определения поправочного множителя на расширение определяем по формуле в зависимости от и погрешностей . Множитель по данным расчёта диафрагмы равен 0,99. погрешность определения коэффициента адиабаты рассчитываем по формуле

,

где - абсолютная погрешность определения коэффициента адиабаты. При определении коэффициента адиабаты природного газа по таблицам с тремя значащими цифрами после запятой абсолютная погрешность может быть принята равной половине единице младшего ряда последней значащей цифры в табличных значениях . В этом случае абсолютная погрешность определения коэффициента адиабаты равна 0,0005. Средняя квадратическая погрешность определения коэффициента адиабаты при =0,0005 и =1,378

.

Средняя квадратическая погрешность определения давления показывающим манометром рассчитывается при и

.

Погрешность при вычисляется по формуле

.

Подставив полученные значения , в формулу, получаем

.

Средняя квадратическая погрешность регистрирующего дифманометра по шкале перепада давления определяется при Δ р =(2/3)Δ рпр, s Δ р =1,5 %, δпк =0,5 %, Δτ Δ р =2 мин:

Задача 3.1. Рассчитать ГРС с максимальной пропускной способностью Qmax3/ч) температурой газа на входе в ГРС t °C. Перекачивается газ метан с ρ0 =0,71(кг/м3). Давление на ГРС изменяется от р1 до р2 (МПа) по вариантам (табл. 9.3.2).

1.Подобрать регуляторы давления.

2.Определить диаметры трубопроводов редуцирования.

3.Проанализировать температурный режим газа на ГРС.

Таблица 3.2

Исходные данные к задаче 3.1

№ п/п Qmax t, oC р1 р2
  15·104   5,5 1,2
  10·104   5,3 1,2
  5·104   4,5 1,2
  3·104   4,7 1,2
  2·104   4,3 1,2
  1·104   3,5 1,2
  1,5·104   3,2 0,6
  1,5·104   3,0 0,6
  1,5·104   4,5 1,2
  2·104   5,5 1,2
  2·104   4,0 1,2
  2·104   3,5 0,6
  2·104   3,1 0,6
  3,5·104   5,8 1,2
  3,5·104   5,2 1,2
  3,5·104   4,7 1,2
  3,5·104   3,5 0,6
  4·104   5,3 1,2
  4·104   4,5 1,2
  4·104   3,8 0,6
  4·104   3,6 0,6
  4,5·104   4,7 1,2
  4,5·104   3,8 1,2
  6·104   3,5 0,6
  7·104   5,6 1,2

4. Газорегуляторные пункты (ГРП)

 

Пример 4.1. Подобрать оборудование и контрольно-измерительные приборы для сетевого газорегуляторного пункта производительностью Q =1100 м3/ч (при нор­мальных условиях) и избыточном давлении газа на входе 80 кПа. Давление на вы­ходе низкое — 3 кПа. Газ природный.


Дата добавления: 2015-07-11; просмотров: 180 | Нарушение авторских прав


Читайте в этой же книге: Регазификация с искусственным испарением | Использование газовоздушных смесей для газоснабжения | ПРИЛОЖЕНИЯ | Критические параметры газов | Решение | Гидравлический расчет газовых сетей высокого и среднего давления | Высокого и среднего давления | Решение | Решение | Подогрев газа на ГРС |
<== предыдущая страница | следующая страница ==>
Методика и пример расчета сужающего устройства| Решение

mybiblioteka.su - 2015-2024 год. (0.015 сек.)