Читайте также:
|
|
Задачи — это математика в реальной жизни. Это — конкретная логика. Собственно, к решению реальных задач и должен, по-моему, сводиться смысл изучения математики.
Однако, тут мы видим знакомый симптом: их доля в учебниках уменьшается к старшим классам.
Чем более сложна школьная математика, тем она более абстрактна и безлика. Посему, задачами пришлось заниматься мало. Но, кое-какие выводы сделать мы успели.
1. Нельзя решать задачу, пока не отработаны все нужные для её решения навыки. Вы не научите решать задачи с пропорцией ученика, который не понял всё о дробях и не умеет их умножать и делить.
Прежде всего, он должен свободно рисовать и рассчитывать саму пропорцию — это отдельный приём, отдельный навык. Задача — это, как бы, приведение примера из жизни.
Вспомним: в учебном цикле контрольного листа это следует всегда после полного понимания и отработки навыка. Нельзя привести пример того, чего не понял или не можешь.
2. Продукт освоения определённых задач — не просто решение задач, а умение составлять задачи этого типа. Определённо, если не можешь составить задачу — значит, не понимаешь её до конца.
3. Поскольку задачи — кусочки жизни, то главный способ работы с ними — масса. Собственно, смысл работы с задачей — представить её, увидеть, понять, как процесс. Решение — второстепенно.
Решение — естественный побочный продукт хорошего видения процесса. Видеть задачу в массе — значит, видеть и решение.
Посему, любую задачу нужно, прежде всего, рисовать, а многие — показывать на предметах.
Рисовать задачи — самый ценный навык в их решении. Довольно быстро он переходит с бумаги в ум. Человек начинает видеть процесс в уме — и решение видно так же хорошо.
4. Обычно задачи расцениваются более, как средство контроля. Напротив! Это — средство развития. Решение разных задач — лучший способ закрепить навыки.
Но, сама методика решения — тоже навык. Разные типы задач имеют свою методику решения. И, прежде, чем давать задачу на контроль, нужно обучить решению именно таких задач.
Если мы говорим о настоящем обучении — с массой, пониманием и тренировкой — то это никак не повредит сообразительности. А вот, когда мы требуем то, чему не научили — от сообразительности часто вообще ничего не остаётся.
5. Задача — это не арифметика или алгебра, а логический процесс. Смысл — увидеть и понять логику задачи. Затем, увидеть последовательность действий. Когда процесс решения понят, задачу можно считать решённой.
Дальше идёт чисто механическая, обслуживающая работа — решение действий. Это, всего лишь, вычисления. Не надо их путать с самой задачей.
В принципе, для них существуют компьютеры. Решение действий — вовсе не то, на что должно тратиться время и внимание! Вычислять надо автоматически, легко.
Мы часто не понимаем этого и «помогаем решать задачу», позволяя человечку корпеть над вычислениями. Это — грубое нарушение постепенности!
Если действия решаются медленно и с трудом — значит, вам не до задач! Значит, надо вернуться в началку, найти дырки и отработать, наконец, это деление в столбик или умножение на минус три пятых!
Сейчас вряд ли можно утверждать, что все должны вычислять всё в уме. На партах лежат калькуляторы. Не могу уверенно сказать, что это плохо.
Но, думаю, что, для задач школьного уровня, компьютер должен быть создан в голове. Посему, будем исходить из требований конкретной школы. В уме ли, на калькуляторе — вычисления не должны сильно отвлекать от логического решения задач.
Итак, вот каким может быть тренировочный цикл для задач.
1. Прочтение и прояснение всех слов в условии задачи.
2. Создание массы условия и процесса, происходящего в задаче. Видение и понимание всего процесса.
3. Выработка последовательности действий для решения, если необходимо — с массой.
4. Вычисление действий и получение ответа. Думаете, это результат? Задачи — да. Обучения — далеко нет!
5. Решение этой же задачи столько раз, сколько нужно до состояния «без задержек» — свободно и бегло. Обычно, хватает 2-3 раз.
6. Решение ещё 3-5 задач того же типа — до свободной беглости. Если беглость не получается — ищите пробелы раньше!
7. Придумывание трёх задач такого типа — с их быстрым решением.
Вот теперь, получен учебный продукт — умение работать с такими задачами. Теперь, человечек решает задачи не то, что без отвращения — с упоением! Он парит над ними, управляет, властвует!
Товарищи учителя, вы именно так щёлкаете задачи, которые задаёте ученикам? Нет?.. Так научитесь их решать вместе с ними — и вы увидите, чем отличается учебный результат от текучки!
Ясно: на задачи других типов будет уходить всё меньше времени и сил — выработался навык логического решения задач.
И, чем больше типов задач добавляется в копилку достигнутых учебных результатов, тем обширнее и универсальнее этот навык — навык решения проблем и изобретения логических выходов.
Недоработанные навыки и пропущенные слова порождают другие пробелы и дырки, тормозят друг друга, размножаются, и в уме вырастает глупость и неспособность.
Навыки, отработанные до результата, имеют обратное магическое свойство. Они поддерживают и расширяют друг друга.
Вычислительные навыки помогают логическим. В уме создаётся прогрессивно растущая сумма развитых навыков решения. Другими словами — интеллект.
Вот такая вот, братцы, альтернативочка!
Что же происходит в реальной жизни? В реальной жизни — компьютерная игрушка «Дэнди»: сделал не так — и потерял «жизнь».
«Папа, да, знаю я эти дроби! Да, знаю я, как тут делить!» Знаешь — а сидишь и соображаешь по полминуты. А задержалась дольше десяти секунд — потеряла «жизнь»!
Ты знаешь — но не умеешь, солнышко моё. Ну, попробуй, пройди эту игру. Хило?.. Так что, вот тебе ещё лист, и учись проходить без потерь!
А что происходит в школе? А в школе мы ставим пятёрки… за что бы вы думали? За правильный ответ! Чтобы его получить, не нужно вообще никакого умения. К чему же мы готовим своих детей, братцы?..
Дата добавления: 2015-07-11; просмотров: 99 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Математика: операционные навыки | | | Русский язык: грамотное написание текста |