|
Читайте также: |
Для исследования функции на непрерывность необходимо:
1. Найти область определения функции;
2. Рассмотреть односторонние пределы в точках, где функция не существует; если функция кусочная, то рассмотреть односторонние пределы в точках «склейки»;
3. Исследовать функцию на бесконечности;
4. Построить эскиз графика функции.
Для классификации точек разрыва функции
можно пользоваться таблицей, приведенной ниже.
Пусть
– заданная функция,
– исследуемая точка,
– соответственно левый и правый пределы функции.
| Тип разрыва | Условия |
| Функция непрерывна |
|
| Устранимый разрыв |
|
| Разрыв первого рода (скачок) |
– конечны
|
| Разрыв второго рода |
|
Рассмотрим примеры.
Пример 1. Задана функция
.
Областью определения функции является множество
. Действительно, функция не существует в единственной точке
, следовательно, эта точка и будет точкой разрыва. Именно в ней мы должны найти односторонние пределы (левосторонний и правосторонний).
· Если отыскивается предел функции
в точке
при условии, что
и
, то этот предел, если он существует, называется левосторонним пределом функции и обозначается
.
· Если отыскивается предел функции
в точке
при условии, что
и
, то этот предел, если он существует, называется правосторонним пределом функции и обозначается
.
Найдем односторонние пределы в точке
.


· Если левосторонний предел и правосторонний предел функции в точке
существуют, но не равны между собой, то есть
то точка
называется точкой разрыва первого рода.
Согласно теории, точка
является точкой разрыва первого рода, то есть в ней функция претерпевает скачок.
Далее исследуем поведение функции на бесконечности, для этого найдем пределы при 


Следовательно,
– прямая, которая является для функции горизонтальной асимптотой.
Сделаем эскиз графика.

Пример 2. Задана функция
.
Областью определения функции является множество
. Действительно, функция не существует в единственной точке
, следовательно, эта точка и будет точкой разрыва. Определим с помощью односторонних пределов тип разрыва в этой точке.

·
- это неопределенность, которую можно раскрыть, разложив на множители числитель и знаменатель.


· Если в точке
функция
имеет левосторонний и правосторонний пределы, и эти пределы равны между собой, но их значения не совпадают со значением функции в этой точке, то эта точка называется точкой устранимого разрыва: 
Делаем вывод, что точка
будет точкой устранимого разрыва.
Графиком функции является прямая с выколотой точкой при
.
Построим график функции, для этого подберем кроме точки (3,1) еще одну произвольную. Пусть это будет (0,–2).
Сделаем эскиз графика функции.

Устранимый разрыв можно ликвидировать, если доопределить функцию в точке разрыва, задав:

Пример 3. Функция
имеет две точки разрыва:
и
. Найдем односторонние пределы в этих точках.
Рассмотрим
Разложив знаменатель на множители и сократив, получим следующее:
– это гипербола, с точками разрыва
и
.
Тогда 
Делаем вывод, что точка
является точкой устранимого разрыва.


· Если в точке
не существует левосторонний или правосторонний предел функции (или оба одновременно), то эта точка называется точкой разрыва второго рода (бесконечный разрыв).
Найдем предел функции на бесконечности:


Следовательно, прямая y= 0 будет горизонтальной асимптотой для заданной функции.
Построим график функции:

Рассмотрим примеры кусочных функций.
Пример 4. 
Функции
являются непрерывными всюду, кроме, может быть, точек «склейки», то есть в
,
. Исследуем поведение функции в окрестности этих точек:


При
функция
определена и равна нулю, а функция
в эту точку не заходит по условию.
· Функция
называется непрерывной в
, если ее левосторонний и правосторонний пределы существуют, между собой равны и равны значению функции в этой точке, то есть 
Следовательно, точка x = 0 является точкой непрерывности функции.

Делаем вывод, что точка x = 2 является точкой разрыва первого рода и непрерывна слева (по условию).
Строим график склеенной функции:

Пример 5. 
Элементарные непрерывные функции
и
не определены в точке
, а функции
и
«склеены» в точке
, которая, быть может, также является точкой разрыва. Исследуем поведение функции в этих точках.


Точка
является точкой устранимого разрыва.

При
функция
принимает значение, равное 2. Следовательно, точка
является точкой непрерывности.
Строим график заданной функции:

Пример 6. 
Функция задана несколькими аналитическими выражениями, поэтому точки разрыва могут быть как в точках склейки
,
, так и в точках
,
,
, где знаменатели дробей обращаются в нуль.
Сделаем некоторые упрощения:
Далее будем рассматривать функцию
с точками разрыва
,
.

Исследуем все точки:

Точка
– точка разрыва второго рода.

Точка
– точка разрыва первого рода, функция непрерывна справа (по условию).

Точка
– точка разрыва первого рода, функция непрерывна справа (по условию).

Точка
является точкой устранимого разрыва.

Точка
является точкой разрыва второго рода.
Исследуем поведение функции
при
, а функции
при
.

Сделаем эскиз графика функции:

Дата добавления: 2015-07-11; просмотров: 253 | Нарушение авторских прав
| <== предыдущая страница | | | следующая страница ==> |
| Студентом(кой) _________________________________________________________________ | | | Обитатели острова Сейбл: Робинзоны-каторжане и всадники-спасатели |