Читайте также:
|
|
Жирные кислоты могут вступать в реакции только после активации. Активация жирных кислот происходит в цитоплазме. Для активной жирной кислоты, как и для глицерина, возможны два пути метаболических превращений: 1. Катаболизм до Ацетил-КоА. Этот процесс называют b-ОКИСЛЕНИЕМ ЖИРНЫХ КИСЛОТ. 2. Синтез жира или других липидов.
B - ОКИСЛЕНИЕ ЖИРНЫХ КИСЛОТ. РЕГУЛЯЦИЯ b-ОКИСЛЕНИЯ
Жирные кислоты, проникающие из крови в клетку, сначала подвергаются реакции активации под действием фермента ацил-КоА-синтетазы:
RCOOH+HSKoA+ATP ® R-CO-SKoA+AMP+PPi
B-окисление жирных кислот — это специфический путь распада жирных кислот, заканчивающие образованием ацетил-КоА. b-окисление жирных кислот имеет такое название потому, что реакции окисления в радикале жирных кислот происходит по b--углеродному атому.b-окисление жирных кислот и последующее за ним окисление ацетил-КоА в ЦТК служатисточником энергии для синтеза АТР.
Процесс b- окисления происходит в матриксе митохондрий и только в аэробных условиях, так как связан с ЦПЭ. |
Внутренняя мембрана митохондрий непроницаема для ацил-КоА, поэтому существует система переноса жирных кислот через мембрану в комплексе с молекулой карнитина (рис.9)
Во внешней мембране митохондрий находится фермент карнитинацилтрансфераза I, который катализирует перенос ацила с КоА на небольшую молекулу карнитина. Затем ацилкарнитин с помощью транслоказы переносится через внутреннюю мембрану митохондрий, где фермент карнитинацил-трансфераза II переносит ацил на внутримитохондрильный HSKoA.
После того как ацил-КоА попадает в матрикс митохондрий, начинается процесс b- окисления, представляющий собой 4 последовательные реакции, которые заканчиваются укорочением жирной кислоты на 2 углеродных атома, так как отщепляется ацетильный остаток (рис.10).
Эти 4 последовательные реакции повторяются до тех пор, пока вся жирная кислота, имеющая четное число атомов углерода, не превратится в определенное количество молекул ацетил-КоА. Эти 4 реакции b- окисления (дегидрирование, гидратация, дегидрирование, отщепление ацетил-КоА) обычно называют циклом b- -окисления, так как имеется в виду, что одни и те к реакции повторяются с радикалом жирной кислоты до тех пор, пока вся кислота не превратится в ацетильные остатки.
Количество молекул АТР, которые образуются при окислении жирной кислоты, можно точно рассчитать. Для этого необходимо знать, что в каждом цикле:
а) образуется ацетил-КоА, который в ЦТК окисляется до СО2 и воды.
Рисунок 9
Число молекул ацетил-КоА, образующихся в результате окисления жирной кислоты с числом п атомов С, можно рассчитать по формуле: п / 2,(п / 2) х 12 = количество молекул АТР,
б) при b- -окислении происходят 2 реакции дегидрирования, в которых восстанавливаются 1 молекула убихинона и 1 молекула NAD+, поэтому каждый цикл дает 5 молекул АТР с участием ЦПЭ;
в) число циклов можно рассчитать по формуле: (п / 2) – 1, так как в последний цикл b- -окисления всегда вступает бутирил-КоА и при его окислении образуется 2 ацетил-КоА, а не один, как во всех предыдущих циклах;
г) суммарный выход АТР при окислении жирной кислоты с числом п атомов С можно рассчитать по формуле:
[ {(п / 2) х 12} + {(п / 2) – 1)} х 5] – 1* = число молей АТФ/ моль жирной кислоты.
*1 молекула АТР используется на активацию жирной кислоты.
Например, при окислении пальмитиновой кислоты (С16) происходит 7 циклов b- окисления, в результате которых образуется 8 моль ацетил-СоА, 7 моль FADH2 и 7 моль NADH+Н+. Следовательно, выход АТР составляет 35 АТР в результате b- окисления и 96 АТР в результате цитратного цикла, что соответствует в сумме 131 моль АТР.
Регуляция b-окисления. Скорость b-окисления, так же как и других метаболических путей, зависит от доступности субстрата ацил-КоА, поэтому b- окисление жирных кислот активируется в постабсорбтивный период или при длительной физической работе, когда в результате распада жиров в жировой ткани в крови увеличивается концентрация жирных кислот. В этих условиях мышцы, миокард и печень активно используют жирные кислоты как источник энергии. Мозг не использует жирные кислоты как источник энергии, так как они не проникают через гематоэнцефалический барьер, являясь гидрфобными молекулами.
Регуляторный фермент b-окисления - карнитинацилтрансфераза I. Аллостеричный ингибитор этого фермента — малонил-КоА образуется только при биосинтезе жирных кислот, следовательно, в постабсорбтивный период, когда поступление ацетильных остатков из митохондрий в цитозоль прекращается, синтез малонил-Ko тоже прекращается иb-окисление в отсутствие ингибитора активируется.
Как важнейший путь, поставляющий АТФ, b- окисление активируется при увеличении в клетке потребности в энергии. Это возможно благодаря непосредственной связи реакций b- окисления через коферменты NAD и FAD с цепью переноса электронов. Чем интенсивнее идет распад АТФ, тем быстрее окисляются жирные кислоты, обеспечивая синтез новых молекул АТФ.
Дата добавления: 2015-07-11; просмотров: 86 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Транспорт жирных кислот альбуминами крови. | | | ЛИПОПРОТЕИНЫ И ИХ ЗНАЧЕНИЕ В ТРАНСПОРТЕ ХОЛЕСТЕРИНА |