Читайте также:
|
|
Батареи статических конденсаторов (БК) могут работать лишь как источники реактивной мощности. Они выпускаются на различные номинальные напряжения и мощности. БК на напряжение до 1000 В обычно включаются по схеме треугольника, так как при этом к конденсатору приложено линейное напряжение и в три раза увеличивается реактивная мощность по сравнению с соединением в звезду:
где Uл - линейное напряжение сети; С - емкость трех фаз батарей; ω - угловая частота.
Размещение конденсаторов в сетях до и выше 1000 В должно удовлетворять условию наибольшего снижения потерь активной мощности от реактивных нагрузок. При этом возможны следующие виды компенсации:
1. Индивидуальная - с присоединением конденсаторов наглухо к зажимам электроприемника. В этом случае от реактивных токов разгружается вся сеть системы электроснабжения. Этот вид компенсации применяется чаще всего на напряжении до 1000 В
и обладает существенным недостатком - неполно используются конденсаторы в связи с их отключением при отключении электроприемника;
Групповая - с присоединением конденсаторов к распределительным пунктам сети (шкафы, шинопроводы). В этом случае распределительная сеть до электроприемников не разгружается от протекания РМ, но эффективнее используется БК;Централизованная - с подключением БК на шины 0,38 и (или) 6-10 кВ РП или ГПП. При подключении БК на шины 0,38 кВ разгружаются только цеховые трансформаторы и вышележащая часть сети.Достоинства БК: 1) малые удельные потери активной мощности (0,0025-0,005 Вт/вар); 2) простота производства монтажных работ (малые габариты, масса, отсутствие фундаментов); 3) простота эксплуатации (ввиду отсутствия вращающихся и трущихся частей); 4) возможность их установки в центре реактивных нагрузок или около электроприемников; 5) для установки конденсаторов может быть использовано любое сухое помещение; 6) возможность постепенного увеличения мощности БК.
Недостатки БК: 1) зависимость генерируемой РМ от напряжения; 2) недостаточная прочность, особенно при КЗ и перенапряжениях; 3) малый срок службы; 4) пожароопасность; 5) наличие остаточного заряда; 6) перегрев при повышении напряжения и наличии в сети высших гармоник, ведущих к повреждению конденсаторов; 7) сложность регулирования РМ (РМ регулируется ступенчато).
В качестве источников РМ широкое применение находят статистические тиристорные компенсаторы (СТК), которые могут работать по принципу прямой или косвенной компенсации.
Прямая компенсация предусматривает генерирование реактивной мощности статическим компенсатором. Различают ступенчатое и плавное регулирование реактивной мощности. В первом случае различное количество секций БК подключают с помощью тиристорных ключей. Во втором случае используются преобразователи частоты, преобразователи с искусственной коммутацией тиристоров.
В качестве источников реактивной мощности для прямой компенсации также используются компенсаторы с искусственной коммутацией тиристоров. Такой компенсатор представляет собой параллельное соединение двух трехфазных преобразователей. Изменение знака угла управления тиристоров достигнуто искусственной коммутацией тока в вентильных контурах напряжениями коммутирующих конденсаторов, а не напряжением сети.
В качестве источника реактивной мощности при косвенной компенсации также используют стабилизаторы с синхронизированными тиристорными ключами. При изменении реактивной мощности нагрузки подключается различное количество реакторов. Для снижения тока переходного процесса включение и отключение реакторов производится при α = π/2, когда проходящий ток равен нулю. В связи с этим запаздывание на включение и отключение реактора не превышает 10 мс. Достоинством этого компенсатора является отсутствие высших гармоник в спектре тока.
Дата добавления: 2015-12-07; просмотров: 185 | Нарушение авторских прав