Читайте также: |
|
Испускание электромагнитных волн происходит при ускоренном движении электрических зарядов. Простейшей моделью источника электромагнитных волн является электрический диполь, дипольный момент которого гармонически изменяется со временем. Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны. Примером такого диполя может служить система, образованная неподвижным точечным зарядом
и колеблющимся около него точечным зарядом
. Такой «колеблющийся» диполь называют осциллятором, или элементарным вибратором. Осцилляторами широко пользуются в физике моделирования и расчета полей излучения реальных систем. Дипольный момент этой системы изменяется со временем по закону
,
где модуль вектора – амплитуда колебаний заряда
.
Изучение такой излучающей системы имеет большое значение в связи с тем, что многие вопросы взаимодействия излучения с веществом могут быть объяснены классически, исходя из представления об атомах как о системах зарядов, в которых содержатся электроны, способные совершать гармонические колебания около положения равновесия. Кроме того, всякую реальную излучательную систему – антенну, по которой течет переменный ток, – можно мысленно разложить на элементы тока, каждый из которых излучает как диполь. Используя принцип суперпозиции для вектора напряженности электрического поля и вектора индукции магнитного поля, можно получить электромагнитное поле всей излучающей системы.
Рассмотрим излучение диполя, размеры которого малы по сравнению с длиной волны . Будем считать, что диполь неподвижен. Начало координат поместим в точку нахождения диполя. Если бы дипольный момент был постоянным, то вектор напряженности электрического поля определялся бы формулой, полученной в электростатике:
.
На малых расстояниях от диполя эта формула верна и в тех случаях, когда дипольный момент меняется со временем. Но на больших расстояниях эта формула не может быть верной, так как на прохождение таких расстояний электромагнитному возмущению, распространяющемуся со скоростью
, требуется конечное время
, в течение которого дипольный момент
может значительно измениться.
![]() |
Описание электромагнитного поля сильно упрощается в так называемой волновой зоне диполя, которая начинается на расстояниях, значительно превышающих длину волны . Если волна распространяется в вакууме или в однородной изотропной среде, то волновой фронт в волновой зоне будет сферическим. Векторы
и
в каждой точке взаимно перпендикулярны и перпендикулярны к направлению распространения волны, то есть к радиус-вектору, проведенному в данную точку из центра диполя (рис. 1.6).
Назовем сечения волнового фронта плоскостями, проходящими через ось диполя, меридианами, а плоскостями, перпендикулярными к оси диполя, – параллелями. Тогда можно сказать, что в каждой точке волновой зоны направлен по касательной к меридиану, а вектор
– по касательной к параллели. Если смотреть вдоль вектора
, то мгновенная картина будет как на рис. 1.6, при этом амплитуда при перемещении вдоль луча убывает.
В каждой точке векторы и
колеблются по закону
. Амплитуды
и
зависят от расстояния
до излучателя и от угла
между направлением
и осью диполя. Для вакуума
и
будут пропорциональны
. Среднее значение плотности потока энергии примерно равно произведению
, следовательно,
пропорционально
.
![]() |
Из этой формулы вытекает, что при заданном значении угла интенсивность волны изменяется вдоль луча обратно пропорционально квадрату расстояния от излучателя. Кроме того, она зависит от угла
. Сильнее всего излучает диполь в направлениях, перпендикулярных к его оси, то есть при
. Зависимость интенсивности от угла
очень наглядно изображается с помощью диаграммы направленности диполя. Эта диаграмма строится так, чтобы длина отрезка, отсекаемого ею на луче, проведенном из центра диполя, давала интенсивность излучения под углом
(рис. 1.7).
Дата добавления: 2015-11-26; просмотров: 152 | Нарушение авторских прав