Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Связь между клетками

Читайте также:
  1. Causation причинная связь между нарушением обязанности и наступившим вредом.
  2. I. Какова связь между Сыном и Солнцем?
  3. II Международный Фестиваль-конкурс детского и юношеского творчества
  4. Lt;variant> решение вопроса между производителем экстерналий и пострадавшими без привлечения государства
  5. Quot;Легенда", конфиденциальность и обратная связь.
  6. XXV. Сражение между людоедами
  7. XXX. Между огнем и стрелами

Клеточная стенка

Снаружи растительная клетка (рис.1) покрыта оболочкой, неодинаковой по толщине и строению у разных клеток. Образующие ее вещества вырабатываются в цитоплазме и откладываются снаружи от нее, постепенно создавая оболочку. Этими веществами прежде всего являются крупномолекулярные полисахариды — пектин, гемицеллюлоза и в небольших количествах целлюлоза. Они образуют так называемую первичную оболочку. Она довольно эластична, по мере роста клетки растягивается и тоже растет, а потому не препятствует росту клетки. Однако она создает определенную прочность клетки и способна защитить ее от механических повреждений (первичной оболочки лишены клетки, служащие для бесполого и полового размножения: зооспоры и гаметы водорослей и низших грибов, мужские гаметы высших растений). У многих клеток имеется не только первичная, но еще и вторичная оболочка. Она образуется под первичной и построена главным образом из целлюлозы. Полисахаридная клеточная оболочка — характерная черта строения растительной клетки, отличающая ее от животной клетки. Оболочка, или клеточная стенка, — это защитное образование.

Целлюлоза — это полисахарид, молекулы которого образуют тончайшие нити — микрофибриллы. В оболочке нити целлюлозы погружены в аморфное вещество, состоящее из пектиновых соединений. У одних клеток эти микрофибриллы целлюлозы расположены поперек длины клетки, кольцами; благодаря этому такие клетки могут растягиваться в длину, но не в ширину (например, клетки сосудов стебля). У других нити лежат продольно; клетки с такой оболочкой эластичны при растягивании поперек, но очень жестки на продольное растяжение. У третьих они расположены наискось, образуя спираль (эпидермальные волоски семян хлопчатника, лубяные волокна). Все это напоминает железобетонные конструкции, причем нити целлюлозы играют здесь роль железных прутьев, а пектиновые вещества — роль цемента. Клетки, имеющие вторичную оболочку, весьма прочны. Они образуют механические, опорные ткани растения. Иногда вторичная оболочка играет и роль склада питательных продуктов: образующие ее вещества могут превращаться в другие, более простые, которые расходуются как питание.

Связь между клетками

В клеточной оболочке имеются неутолщенные места — поры (рис. 9). (в первичной оболочке они называются поровыми полями) для осуществления связи между соседними клетками. Сквозь

Рис. 2.Схема строения пор (на продольном разрезе клетки): А — простая пора; Б — окаймленная пора; 1 — межклетное вещество; 2 — первичная оболочка клетки; 3 — вторичная оболочка клетки; 4 — плёнка поры; 5 — полость поры (камера у окаймленной поры); 6 — торус; 7 — входное отверстие поры.

них проходят тонкие тяжи цитоплазмы которые связывают соседние клетки – это плазмодесмы. По ним осуществляется межклеточный обмен. Плазмодесмы наряду с элементами проводящей ткани соединяют клетки и ткани организма в единое целое. Обмен веществами и распространение возбуждения позволяют клеткам влиять на развитие и работу друг друга, и каждая ткань влияет на жизнедеятельность всех других тканей. Этим создается координация работы всех частей целого растения.

 

Цитоплазма

 

Под оболочкой клетки находится цитоплазма. Самый наружный ее слой, примыкающий к оболочке,— поверхностная клеточная мембрана — плазмалемма. Она представляет собой комбинацию слоев жироподобных и белковых молекул. Такие мембраны называются липопротеиновыми («липос» — жир, «протеин» — белок). Мембрана подобной конструкции, называемая тонопластом, отграничивает цитоплазму от вакуолей. Многие органоиды клетки построены из липопротеиновых мембран. Качественное разнообразие липидов и особенно белков колоссально, отсюда огромное разнообразие мембран, отличающихся по свойствам, как в пределах одной клетки, так и в разных клетках. Плазмалемма регулирует вход веществ в клетку и выход их из нее, обеспечивает избирательное проникновение веществ в клетку и из клетки.

Скорость проникновения сквозь мембрану разных веществ различна. Хорошо проникают через нее вода и газообразные вещества. Легко проникают также жирорастворимые вещества,— вероятно, благодаря тому, что она имеет липидный слой. Предполагается, что липидный слой мембраны пронизан порами. Это позволяет проникать сквозь мембрану веществам, нерастворимым в жирах. Поры несут электрический заряд, поэтому проникновение через них ионов не вполне свободно. При некоторых условиях заряд пор меняется, и этим регулируется проницаемость мембран для ионов. Однако мембрана неодинаково проницаема и для разных ионов с одинаковым зарядом, и для разных незаряженных молекул близких размеров. В этом проявляется важнейшее свойство мембраны — избирательность ее проницаемости: для одних молекул и ионов она проницаема лучше, для других хуже.

Во всех этих случаях речь идет о движении веществ путем диффузии. Однако клеточные мембраны располагают и механизмами активного транспорта необходимых веществ, против градиента концентрации. Среди белков мембраны имеются белковые вещества, работа которых состоит в перемещении различных веществ с одной стороны мембраны на другую. Они называются транспортными ферментами. Детали процесса активного транспорта пока неизвестны, но очевидно одно - такой вид доставки веществ внутрь клетки нуждается в затрате энергии.

При химических или физических изменениях во внешней и внутренней среде клеточные мембраны изменяют свою проницаемость, а также степень и сам характер ее избирательности. На этом основываются механизмы регуляции движения веществ в клетку и из клетки. Изменение проницаемости мембран для питательных веществ отражается на интенсивности обменных процессов в клетке, на всей ее жизнедеятельности. Поверхности плазмодесм, проходящих сквозь клеточные стенки и соединяющих цитоплазму соседних клеток, тоже образованы такими мембранами. Биоток движется и по ним, распространяясь от клетки к клетке. Биотоки растительной клетки пока еще мало изучены. Однако ясно, что они являются способом сигнализации, используемым в растительной клетке для пуска в ход одних химических реакций и торможения других. Регуляция обмена веществ биотоками — это лишь один из многих способов регуляции внутриклеточного метаболизма.

Цитоплазма сложно структурирована. Важнейшими органоидами цитоплазмы являются митохондрии, эндоплазматический ретикулум (эндоплазматическая сеть), аппарат Гольджи, рибосомы, пластиды, лизосомы. У подвижных клеток (зооспоры и гаметы водорослей, сперматозоиды хвощей, папоротников, саговников, некоторые одноклеточные и колониальные водоросли) имеются органоиды движения — жгутики.

Особенно много новых фактов о тонком строении цитоплазмы принесло и приносит использование электронного микроскопа, позволяющего исследовать детали строения самих органоидов. Современные биофизические и биохимические методы позволяют выделять в чистом виде те или иные органоиды цитоплазмы и затем изучать их химический состав и их функции. Вне клетки, в средах сложного состава, многие органоиды способны выполнять ту работу, которую они производят, когда находятся в клетке.

Часть цитоплазмы, в которую погружены органоиды и которая пока что представляется бесструктурной, называется основным веществом цитоплазмы или гиалоплазмой. В ней протекает ряд жизненно необходимых химических процессов.

Все химические реакции, протекающие в клетке, можно разделить на две группы. В результате одних (реакций распада) макромолекулы распадаются на более простые составляющие. В результате других (реакций синтеза) из низкомолекулярных компонентов образуются вещества с более крупными молекулами. Для осуществления реакций синтеза энергию необходимо затратить, реакции распада идут с освобождением энергии, которая запасается путем образования специальных веществ — аккумуляторов химической энергии — аденозинтрифосфорной кислоты (АТФ) и родственных ей соединений. В дальнейшем эта энергия по мере необходимости используется клеткой для реакций синтеза и для производства иных видов работы (электрической, механической, работы по транспорту веществ). В гиалоплазме содержатся ферменты, расщепляющие молекулы глюкозы на более простые молекулы пировиноградной кислоты. Освобождающаяся при этом энергия запасается путем образования молекул АТФ. Тот же процесс протекает и в клеточном ядре. Однако основная масса энергии добывается в особых органоидах цитоплазмы — митохондриях, так как там происходит более глубокое расщепление веществ.

Митохондрии

Рис. 3.Строение митохондрии. Вверху и в середине - вид продольного среза через митохондрию (вверху - митохондрия из эмбриональной клетки кончика корня;в середине - из клетки взрослого листа элодеи). Внизу - трехмерная схема, на которой часть митохондрии срезана, что позволяет видеть ее внутреннее строение. 1 - наружная мембрана; 2 - внутренняя мембрана; 3 - кристы; 4 - матрикс.

Митохондрии — мелкие тельца округлой или продолговатой формы, размером 0,5 — 1,5 мк, т. е. величиной с бактерию. Число их в клетке обычно велико, порядка 100—3000. Бывают, однако, клетки и с малым количеством митохондрий. Так, в спермии морской водоросли фукуса содержится всего 4 митохондрии, а в одноклеточной водоросли микромонас — одна. Митохондрии видны под световым микроскопом, однако их тонкое строение можно изучать лишь с помощью электронного микроскопа (рис. 3). Митохондрии построены из липопротеиновых мембран, погруженных в основное вещество — матрикс. Наружная мембрана митохондрии не образует впячиваний и складок, и замкнута сама на себя.

Внутренняя мембрана дает многочисленные впячивания внутрь, это кристы. Между ними находится матрикс. И внутренняя мембрана митохондрии, и образуемые ею кристы построены из упорядоченно расположенных ферментов. Благодаря складкам — кристам рабочая поверхность мембран внутри митохондрий очень велика. Ряд ферментов находится в матриксе митохондрии.

Совокупность этих ферментов осуществляет внутриклеточное дыхание и запасание освобождающейся при дыхании энергии в форме АТФ. Работа митохондрий тесно связана с процессами, идущими в гиалоплазме, где протекают первые этапы расщепления глюкозы и других веществ до пировиноградной кислоты. В митохондриях же протекает дальнейшее ее расщепление. Пировиноградная кислота проникает в митохондрии и здесь ступенчато, шаг за шагом, окисляется до углекислого газа и воды, причем одновременно потребляется кислород. Это и есть внутриклеточное дыхание, при котором клетка, расщепляя и окисляя вещества, добывает очень много энергии, которую она потом может использовать для самых разных своих нужд.

Чем активнее жизнедеятельность клетки, тем больше у нее потребность в энергии и тем больше в ней митохондрий. Они и в пределах одной и той же клетки могут быть распределены неравномерно: их больше в той части клетки, которая в данный момент работает активнее.

Митохондрии способны синтезировать часть тех веществ, из которых состоят они сами. Благодаря этому митохондрии могут размножаться.


Дата добавления: 2015-12-08; просмотров: 1222 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.009 сек.)