Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Мышечная ткань.

Читайте также:
  1. Гладко мышечная ткань
  2. Мышечная система
  3. Мышечная система и ее возрастные особенности
  4. Нервная ткань.
  5. Прогрессивная мышечная релаксация

Поперечно-полосатые мышцы.Основные элементы: мембрана – сарколемма; цитоплазма – саркоплазма, содержит большое число миофибрилл – специальные органеллы, которые отвечают за сокращение; саркоплазма содержит продольные цистерны ЭПР, гликоген, АТФ, креатинфосфат, гликолитические ферменты. Саркомер – его границы это линии Z. При большом увеличении наблюдается чередование белых полос – диск I (изотропные) и темных полос – диск А анизотропные диски. В диске А имеются менее темные участки – Н, и темная линия – М – в нее встроен фермент креатинфосфокиназа; белок миолизин – прикрепляет хвосты миозина. Химический состав: 75-80% воды, 20-25% сухого остатка: 1) саркоплазматические белки – миоальбумины, миоглобулины, миоглобин, ферменты гликолиза и гликогемолиза 2) белки стромы – коллаген, эластин 3) сократительные белки – актин, миозин, тропомиозин, тропонин. 15% сухого остатка это: 1) азотсодержащие вещества – глутамин, карнозин, ансерин, креатин, креатинин, свободные а/к 2) фосфорсодержащие вещества – АТФ и другие нуклеопротеиды, креатинфосфат 3) липиды – фосфолипиды, фосфоглицериды 4) углеводы – гликоген 5) минеральные вещества. Миозин – миофибриллярный белок, на него приходится 50% всех белков мышц. В основе миозина – длинный спиралевидный хвост, который заканчивается двумя глобулярными головками, около которых располагаются легкие цепи миозина. Актин – в глобулярной форме G-актин – 42 кДа. В присутствии АТФ полимеризуется в F-актин. На 7 молекул G-актина приходится 1 молекула тропомиозина (ТМ) – черный стержень в структуре тонкаго филамента. Есть еще дополнительные белки – тропонины – тропониновый комплекс (Тт) для связывания с тропомиозином, TI – ингибирует АТФ-азную активность миозина, ТС т- связывает ионы Са. Механизм взаимодействия нитей миозина и актина

1) гидролиз АТФ миозином идет быстро 2) АДФ и Фн освобождаются медленно и остаются связанными с головками миозина, они могут вращаться под большим углом 3) при поступлении сигнала миозиновые головки прочно связываются с актиновым филаментом под углом 900 и образуется актомиозин АДФ и высвобождается Фн. 4) т.к. актомиозиновый комплекс имеет наименьшую энергию при угле 900, происходит поворот головки на 450 что сопровождается выделением АДФ. Новая молекула АТФ отсоединяет актин от миозина. Миозиновые головки шагают вдоль актиновых нитей, т.о. происходит сближение Zлиний за счет перемещения толстых филаментов относительно тонких. В результате мышца сокращается до 1/3 своей иходной длинны. 1сек – 15 мкм – скольжение. Регуляция мышечной активности опосредован Са. 1) актиновая регуляция через освобождение у актина участка для связывания с миозином. Са концентрируется в саркоплазматическом ретикулуме при участии Са-связывающего белка – кальсеквестрин имеет 40 участков для связывания с ионами Са. При поступлении сигнала происходит деполяризация мембраны мышечных клеток и открываются Са каналы. В покое ионы кальция составляют 10-7-10-8, после открытия Са каналов концентрация становится 10-6-10-5 степени. При низкой концентрации Са 10-7-10-8 и тропонин и тропомиозин препятствует взаимодействию актина с миозином. После повышения концентрации Са, Са связывается с белком тропонином С – его боковая петля оказывает влияние на тропонин I и Тт а они располагались рядом с тропомиозином и он с тропониновым комплексом отходит от участка актина, который способен взаимодействовать с миозином. Начинается взаимодействие актина и миозина, начинается сокращение. Сердечная мышца полностью зависит от поставки Са из внеклеточной жидкости. Роль оксида азота и его влияние на организм. Под его действием на гладкие мышечные клетки увеличивается поток Са из клеток, уменьшается фосфорилирование легких цепей миозина – протеинкиназы С. Это нарушает взаимодействие актина и миозина, что приводит к мышечной релаксации. Роль Са: 1) оттягивает тропин-тропомиозиновый комплекс от актина 2) активирует миозиновую АТФ-азу 3) непрямой эффект – осуществляет фосфорилирование легкой цепи миозина, что может ускорить взаимодействие актина с миозином. Миозиновая регуляция – в миозине открываются участки для связывания с актином. 2 легкие цепи миозина у глобулярной головки закрывают участки для связывания с АТФ и актином. Особенности сокращения гладких мышц – пусковой момент – концентрация Са, но тропониновая система в гладких мышцах отсутствует, то Са связывается с кальмодулином и активирует протеинкиназу легких цепей, в результате протеинкиназа будет фосфорилировать легкие цепи миозина и они будут отъезжать с головки открывая участки связывания миозина, что приводит к мышечному сокращению. При понижении Концентраци Са до 10-7 Са отсоединяется от кальмодулина, протеинкиназа инактивируется à участки закрываются. Миоглобин (гемопротеид) саркоплазматический белок, Fe2+, 1 гем, 1 бело, обладает большим сродством к кислороду чем гемоглобин, поэтому отнимает у него кислород и доставляет к тканям. Основной источник энергии – АТФ, но его хватило бы буквально на доли секунд. Источники АТФ: 1) креатинфосфат + АДФ ßà(креатинфосфокиназа, магний) креатин+АТФ. При мышечном сокращении АТФ будет разлогаться на АДФ и Фн. 2) С помощью фермента аденилаткиназы (миокиназа) АДФ+АДФàАТФ+АМФ – алостерический модулятор фосфофруктокиназа. 3) процессы гликолиза и гликогенолиза – анаэробный гликолиз для белых мышц, аэробный для простых мышц (глюàПВКàАцКоАàЦТК). Исчезновение АТФ приводит к: 1) Са насос саркоплазматического ретикулума перестает поддерживать низкую концентрацию Са 2) не происходит зависимая от АТФ отделение миозиновых головок от F-актина – трупное окоченение.

2) В покое основным источником энергии служат свободные жирные кислоты и кетоновые тела, при умеренной нагрузке еще и глюкоза, при максимальной – скорость доставки субстратов снижается и начинается расщепляться гликоген до лактата путем аэробного гликогенолиза. Накопление молочной кислоты и низкое рН, а также высокая t снижает эффективность энергетических процессов в мышцах. Источники аммиака: 1) процессы дезаминирования АМФ, т.е. АМФ à (аденилатдезаминаза) аммиак + инозинмонофосфат à аспарагиновая кислота à фумарат + ГТФ à АМФ. 2) система непрямого дезаминирования и участие а-кетоглутаровой кислоты. Возрастные особенности: 1) на долю мышечной ткани приходится 25%, у взрослых 45%. 2) характерен тонус сгибателей (новорожденный) 3) снижено содержание миофибриллярных белков, увеличено содержание белков стромы и саркоплазмы 4) миозин – миозин – фетальный – со сниженной АТФ-азной активностью. Заболевания мышечной системы: 1) первичные миопатии – прогрессирующая мышечная дистрофия – поражает лиц любого возраста. Мышечная слабость, отмечается увеличение проницаемости клеточной мембраны, поэтому мышечные ткани хуже задерживают креатин. Замена сократительных белков на саркоплазматические Причина: снижение образования белка дистрофина, поддерживающего структуру мембран. Дистрофия Дюшена – наиболее выражена, креатинфосфокиназа увеличена в крови в 10, 100 раз. 2) вторичные миопатии – связаны с травмами, нарушение проводимости нервного волокна. При ишемической болезни сердца снижается доля аэробных процессов, появляется молочная кислота, накапливаются жирные кислоты, это приводит к жировой инфильтрации сердечной мышцы и слабости. Нарушается мембранная проницаемость, из клеток выходит К, креатинфосфокиназа и изофермент МВ, ЛДГ1 и ЛДГ2. Снижается АТФ, креатинфосфат, концентрация цАМФ снижается, увеличивается фосфодиэстеразная активность, нарушается способность аденилатциклазной системы активироваться адреналином. Для оценки состояния мышечной системы и диагностики инфаркта миокарда используют органоспецифические изоферменты и белки. Маркеры (маркеры гибе5ли кардиомиоцита) – ТнС и ТнI. Появляется прежде всего миоглобин через 3-4 ч увеличенный в 120-20 раз, гликогенфосфорилаза (ВВ), гликогенфосфорилаза – 98% достоверности в постановке диагноза. АсАТ – 47%, ЛДГ1 – увеличивается через 12 ч., и остается в течении 11-12 дней. Тропонин Т увеличивается на 3 часу после инфаркта миокарда – остается с 3х часов до 3 недель.

120. Соединительные ткани – межклеточный матрикс вместе с клетками различного типа (фибробласты, хондробласты, тучные клетки, макрофаги, остеобласты). Специализированная соединительная ткань – скелетная (хрящи, кости). Со специфическими свойствами (жировая, слизистая, пигментная). Собственно соединительная ткань – широко распространена, расположена по ходу сосудов, подстилает кожу, в области мочеточников, почечных лоханок, основа паренхиматозных органов, входит в состав связок и сухожилий. Поражение этой ткани приводит к рахиту, ревматизму, атеросклеротизму сосудов, коллагенозам. Строение соединительной ткани. Коллаген – распространенный белок соединительной ткани, составляет 1/3-1/4 от всего белка соединительной ткани. Составляет 5-6% от массы тела. Химический состав уникален – каждая 3 а/к – глицин – маленькая а/к, которая не мешает соединению полипептидных цепей в волокно. 1/5 от всех а/к – пролин и оксипролин – это своеобразные замки, которые придают прочность коллагеновому волокну. Окси а/к-ты – оксилизин и оксипролин. Структурная единица коллагена – молекула тропоколлагена – содержит до 1000 а/к, спирализована, соединены по 3 и образуют структуру похожую на кабель – суперспирализация. Последовательность а/к в полипептидной цепи характеризуется высокой специфичностью – каждая 3ая а/к-та – глицин, часто встречаются оксиглицин и пролин. 5 основных – минорных - типов коллагена. 1ый тип отличается от 3го тем, что он присутствует в твердых образованиях (кости, фасции, дентин), для 1го типа характерно низкое содержание оксилизина, малое число сайтов для гликолизирования. 3ий тип присутствует в мягких образованиях (кожа, сосуды, матка), имеет большое число остатка оксилизина, большое число сайтов.

Синтез коллагена – особенности: 1) биосинтез коллагена не заканчивается сборкой полипептидных цепей, а заканчивается сборкой молекулы коллагена, характерны ко- и посттрансляционные модификации. Часть происходит в фибробластах, а часть в межклеточном матриксе. Эластин – основной белок соединительной ткани. А/к-ный состав: 1/3 - а/к – глицин, но мало оксилицина и оксипролина, много а/к имеющих неполярные группы. Десмозин и изодесмозин – состоят из 4х молекул лизина, из которых 3 окисляются в аллизин и конденсируются с образованием структуры десмозина. Если эластические волокна утрачивают способность растяжения то клинически это проявляется как эмфизема легких, аневризм, нарушение сердечных клапанов, что приводит к снижению активности лизиноксидазы при дефиците меди и витамина В6. Основное вещество – гидротированный гель, образован высокомолекулярными и высокополимерными соединениями, которые представлены протеогликанами – сложные белки, в состав небелкового компонента входят углеводные компоненты. Собственно протеогликаны содержат 5% белкового компонента и 95% углеводного компонента – гликозаминогликаны – ГАГ (мукополисахариды). ГАГ – высокомолекулярные соединения, мономером является дисахаридная единица, которая представлена уроновой кислотой


Дата добавления: 2015-12-08; просмотров: 78 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.007 сек.)