Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Микроэлементы. Практическая значимость исследований по микроэлементам связана с тем

Читайте также:
  1. Микроэлементы
  2. Микроэлементы
  3. Микроэлементы, их характеристика

Практическая значимость исследований по микроэлементам связана с тем, что есть почвенные провинции, где остро недостает того или иного из них. Кроме того, часто в почве микроэлементы находятся в неусвояемом для растительного организма состоянии, поэтому внесение микроудобрений (удобрений, содержащих микроэлементы) в почву очень полезно. Однако надо учитывать, что высокие дозы микроэлементов могут оказать ядовитое влияние.

Выяснилось, что микроэлементы в подавляющем большинстве активируют определенные ферментативные системы. Это осуществляется различными путями – непосредственным участием в составе молекул ферментов или их активацией.

Важным моментом в действии всех микроэлементов является их способность давать комплексные соединения с различными органическими соединениями, в том числе и с белками. Разные микроэлементы могут давать комплексные соединения с одними и теми же органическими веществами, благодаря чему они могут выступать как антагонисты. Отсюда понятно, что для нормального роста растений необходимо определенное соотношение микроэлементов (железа к марганцу, меди к бору и т. д.). В решение вопросов, связанных с питанием растений микроэлементами большой вклад внесли Я.В. Пейве, М.Я. Школьник, М.В. Каталымов, Б.А. Ягодин и др.

Марганец поступает в растение в виде ионов Мn2+. Среднее содержание марганца в растениях 0,001%. В растении марганец находится в разной степени окисления (Мn2+, Мn3+, Мn4+).

Марганец характеризуется высоким показателем окислительно-восстановительного потенциала. С этим связано значение этого элемента в реакциях биологического окисления. Он необходим для нормального протекания фотосинтеза, поскольку входит в состав активного центра кислородовыделяющего комплекса фотосистемы II и осуществляет разложение воды и выделение кислорода: 2Мn4+ + 2Н2О → 2Мn2+ + 4Н+ + О2. Кроме того, марганец участвует в восстановлении СО2, играет роль в поддержании структуры хлоропластов. В отсутствие марганца хлорофилл быстро разрушается на свету.

Марганец активирует более 35 ферментов, участвующих в реакциях окисления-восстановления, декарбоксилирования и гидролиза. В том числе ферменты, катализирующие реакции цикла Кребса (дегидрогеназа яблочной кислоты, лимонной кислоты, декарбоксилаза щавелевоуксусной кислоты и др.). В связи с этим понятно большое значение марганца для процесса дыхания, особенно его аэробной фазы.

Марганец участвует в азотном обмене в восстановлении нитратов до аммиака, поскольку в этом процессе участвуют ферменты, некоторые из которых зависимы от марганца. В связи с этим у растений, испытывающих недостаток марганца, затруднено использование нитратов в качестве источника азотного питания. Марганец связан с синтезом белка через регуляцию активности ДНК-полимеразы и РНК-полимеразы.

Марганец активирует ферменты, участвующие в окислении важнейшего фитогормона – ауксина.

Медь поступает в растение в виде иона Сu2+ или Сu+. Среднее содержание меди в растениях 0,0002%.

Медь входит непосредственно в состав ряда ферментных систем, относящихся к группе оксидаз, таких, как полифенолоксидаза, аскорбатоксидаза, цитохромоксидаза. В этих ферментах медь соединена с белком, по-видимому, через SH-группы. Полифенолоксидаза и аскорбатоксидаза осуществляют окисление фенолов и аскорбиновой кислоты, а цитохромоксидаза входит в состав дыхательной цепи митохондрий. Ряд ферментов медь активирует, в частности нитратредуктазу, а также протеазы. Это объясняет роль меди в азотном обмене.

Большая часть меди (75% от всего содержания меди в листьях) концентрируется в хлоропластах. В хлоропластах сосредоточен и медьсодержащий белок синего цвета – пластоцианин. Содержание меди в пластоцианине составляет 0,57%. Медь, подобно железу и марганцу, обладает способностью к обратимому окислению и восстановлению: Сu2+ + е → Сu+. Именно поэтому пластоцианин участвует в переносе электронов от ФСII к ФСI. При дефиците меди снижается активность первой фотосистемы. В связи с этим понятно значение меди для процесса фотосинтеза.

Цинк поступает в растение в виде ионов Zn2+. Среднее содержание цинка в растениях 0,002%.

В растениях цинк не участвует в окислительно-восстановительных реакциях, поскольку не меняет степень окисления. Он входит в состав более 30 ферментов, в т. ч. фосфатазы, карбоангидразы, алкогольдегидрогеназа, РНК-полимераза и др. Карбоангидраза катализирует разложение гидрата окиси углерода на воду и углекислый газ. Эта реакция важна для процесса фотосинтеза. Углекислый газ, поступая в клетку, растворяется в воде, образуя Н2СО3: СО2 + Н2О «НСО3 + Н+. Фермент карбоангидраза, катализируя высвобождение СО2 из гидрата окиси углерода, способствует его использованию в процессе фотосинтеза. Кроме того, цинк активирует такие ферменты, как енолаза, альдолаза, гексокиназа, триозофосфатдегидрогеназа. В этой связи понятно значение цинка для процессов дыхания и фотосинтеза.

Цинк играет важную роль при образовании фитогормона ауксина. Это связано с тем, что цинк, повышая активность триптофансинтетазы, влияет на образование аминокислоты триптофана – предшественника ауксина. Внесение цинка повышает содержание ауксинов и заметно сказывается на темпах роста растений. При дефиците цинка возрастает проницаемость мембран, что свидетельствует о роли этого элемента в структуре мембран, в поддержании их интеграции.

Цинк влияет на белковый синтез, на активность РНКазы. Обнаружены белки, содержащие цинк и участвующие в репликации ДНК и транскрипции. Цинк входит в состав одного из факторов регуляции транскрипции в соединении с остатками гистидина и цистеина («цинковые пальцы»).

Молибден поступает в растения в виде аниона МоО42–. Содержание молибдена в растениях составляет 0,0005–0,002%.

Молибден входит в состав более 20 ферментов, выполняя при этом не только каталитическую, но и структурную функцию. Молибден вместе с железом входит в состав активного центра ферментного комплекса нитрогеназы в виде Mo-Fe-белок и участвует в фиксации азота атмосферы различными микроорганизмами.

При недостатке молибдена происходят заметные изменения в азотном обмене растений – наблюдается уменьшение синтеза белка при одновременном падении содержания аминокислот и амидов. Нарушения в азотном обмене особенно проявляются на фоне питания растений нитратами. Это связано с тем, что молибден входит в активный центр фермента, восстанавливающего нитраты до нитритов,– нитратредуктазу. Нитратредуктаза – это флавопротеид, простетической группой которого является флавинадениндинуклеотид (ФАД). При восстановлении нитратов молибден действует как переносчик электронов от ФАД к нитрату, при этом NO3 переходит в NO2, а Мо5+ – в Мо6+. Образование нитратредуктазы является одним из немногих примеров адаптивного синтеза ферментов в растительном организме. Этот фермент образуется, когда в среде имеются нитраты и молибден. Активность нитратредуктазы возрастает в 10 раз и более при питании растений нитратами по сравнению с аммиаком, причем появление фермента происходит уже через 1–3 ч после внесения в среду нитратов.

По-видимому, молибден обладает и другими функциями, так как необходим растению и в условиях достаточного уровня аммиачного питания. При недостатке молибдена резко падает содержание аскорбиновой кислоты. При отсутствии молибдена наблюдаются нарушения в фосфорном обмене растений. Со способностью молибдена к комплексообразованию связано влияние этого элемента на стабилизацию структуры нуклеиновых кислот.

Бор поступает в растение в виде аниона борной кислоты – ВО33–. Среднее содержание бора в растениях 0,0001%.

Роль бора выяснена далеко не достаточно. Это связано с тем, что бор, в отличие от большинства других микроэлементов, не входит в состав ни одного фермента и не является активатором ферментов.

Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, полисахариды, спирты, фенольные соединения JH др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций через субстраты, на которые действуют ферменты. Комплексы органических соединений с борной кислотой могут иметь и иное значение. Так, способность бора образовывать комплексы с углеводами оказывает влияние на клеточную оболочку, регулируя ориентацию мицелл целлюлозы, что способствует ее большей эластичности. У растений, испытывающих недостаток бора, наблюдается быстрая потеря эластичности клеточных оболочек, что, в свою очередь, связано с более жесткой ориентацией мицелл целлюлозы. Бор играет роль в поддержании структуры мембран. При недостатке бора подавляется: активность Н+-помпы, повышается проницаемость мембран.

Комплексы сахаров с бором – сахаробораты, по-видимому, легче проникают через мембраны и быстрее передвигаются по растению. При недостатке бора сахара накапливается в листьях, и их отток резко тормозится. Определения, проведенные с нанесением меченой сахарозы на листья, показали, что при небольшом добавления борной кислоты отток сахарозы идет значительно быстрее. Сходные результаты были получены в опытах, в которых лист экспонировался в атмосфере, содержащей меченый СО2. Образовавшиеся при этом меченые продукты фотосинтеза оттекали значительно быстрее у растений, получивших бор. Показано (М.Я. Школъник), что при недостатке бора нарушается синтез нуклеиновых кислот. В боронедостаточных растениях заторможен процесс аминирования органических кислот. Бор может выступать как ингибитор активности ряда ферментов, в первую очередь катализирующих образование фенольных соединений. При недостатке бора наблюдается накопление кофейной и хлорогеновой кислот, которые считаются ингибиторами роста растений. Бор усиливает рост пыльцевых трубок, прорастание пыльцы. В этой связи опрыскивание бором способствует оплодотворению.

Кобальт находится в тканях растений в ионной (Со2+, Со3+ и комплексной форме. Содержание кобальта в среднем составляет 0,00002%.

Особенно кобальт необходим бобовым растениям, поскольку участвует в фиксации атмосферного азота. Кобальт входит в состав кобаламина (витамин В12 и его производные), который синтезируется бактериями в клубеньках бобовых растений, а также в состав ферментов у азотфиксирующих организмов, участвующих в синтезе метионина, ДНК и делении клеток бактерий. При дефиците кобальта подавляется синтез леггемоглобина, снижается синтез белка, и уменьшаются размеры бактероидов. Это говорит в пользу необходимости кобальта. Установлена потребность в кобальте для высших растений, не способных к азотфиксации. Показано влияние кобальта на функционирование фотосинтетического аппарата, синтез белка, его связь с ауксиновым обменом. Трудность решения вопроса о необходимости кобальта для всех растений заключается в том, что потребность в нем чрезвычайно мала.

Хлор поступает в растение в виде Сl. Хлор необходим для работы ФС II на этапе фотосинтетического разложения воды и выделения кислорода. Показано влияние хлоридов на работу Н+-АТФаз тонопласта, участие вселении клетки. Имеются сведения о влиянии хлора на азотный обмен. Так, хлориды стимулируют активность аспарагинсинтетазы, которая участвует в переносе аминогруппы на аспарагин. Концентрируясь в растении в вакуолях, хлориды могут выполнять осморегулирующую функцию. Недостаток хлора проявляется редко и наблюдается только на очень щелочных почвах.

Никель поступает в растения в виде иона Ni2+, но может также находиться в виде Ni+и Ni3+. Роль никеля для высших растений как: микроэлемента была доказана недавно. До этого считали никель необходимым микроэлементом многих бактерий. У высших растений никель входит в состав фермента уреазы, который осуществляет реакцию разложения мочевины. Показано, что в растениях, обеспеченных никелем, активность уреазы выше и соответственно ниже содержание мочевины по сравнению с необеспеченными. Никель активирует ряд ферментов, в т. ч. нитратредуктазу и другие, оказывает стабилизирующее влияние на структуру рибосом.

Имеются еще и такие элементы, которые усиливают рост лишь определенных: групп растений. Для роста некоторых растений засоленных почв (галофитов) оказывается полезным натрий. Необходимость натрия проявляется у растений С4 и САМ. У этих растений показана необходимость натрия для регенерации ФЕП при карбоксилировании. Недостаток натрия у этих растений приводит к хлорозу и некрозам, а также тормозит развитие цветка. В натрии нуждаются и многие С3-растения. Показано, что этот элемент улучшает рост растяжением и выполняет осморегулирующую функцию, подобно калию. Благоприятное влияние оказывает натрий на рост сахарной свеклы и цианобактерий.

Для роста диатомовых водорослей необходим кремний. Он улучшает рост некоторых злаков, таких, как рис и кукуруза. Кремний повышает устойчивость растений против полегания, так как входит в состав клеточных стенок. Хвощи нуждаются в кремнии для прохождения жизненного цикла. Однако и другие виды аккумулируют достаточно кремния и отвечают при внесении кремния повышением темпов роста и продуктивности. В гидрированной форме SiO2 кремний накапливается в эндоплазматическом ретикулуме, клеточных стенках, в межклеточных пространствах. Он может также образовывать комплексы с полифенолами: и в этой форме вместо лигнина служит для укрепления клеточных стенок.

Показана необходимость ванадия для Scenedesmus (зеленая одноклеточная водоросль), причем это очень специфическая потребность, так как даже для роста хлореллы ванадий не нужен.

Не все растения одинаково нуждаются и в тех элементах, которые относят к необходимым. Так, уже упоминалось, что бор значительно меньше нужен злакам. Бор и кальций необходимы для всех растений. В то же время для некоторых бактерий и грибов кальций может быть заменен стронцием: или барием. Бобовые больше нуждаются в молибдене по сравнению с представителями других семейств. Калий в некоторых случаях и в небольших количествах может быть заменен рубидием или цезием. Бериллий может заменить магний для некоторых: грибов и частично для томатов.

Не все элементы, необходимые для жизни растений, являются таковыми для животных. Так, по-видимому, для животных не нужен бор. Они больше нуждаются: в натрии, чем в калии. Установлено, что для животных необходимы йод и кобальт. Такие различия в реакции на элементы питания различных организмов для физиолога очень важны, так как дают возможность выяснить, какую роль играет данный элемент. Так, если бор не нужен животным, то, следовательно, его функция должна быть связана со специфическими особенностями растительного opганизма.

 


Дата добавления: 2015-12-08; просмотров: 72 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.008 сек.)