Читайте также: |
|
Физические основы и классификация магнитных методов контроля. Методы и средства намагничивания. Магнитная структуроскопия. Связь коэрцитивной силы,магнитной проницаемости с твердостью и прочностью.
Магнитные методы контроля основаны на регистрации магнитных полей рассеяния, возникающих над дефектами, или на определении магнитных свойств контролируемых изделий.
Вид контроля | ||||
по характеру взаимодействия физических полей или проникающих веществ с ОК | по первичному информативному параметру | по способу получения первичной информации | ||
Магнитный | Магнитный | Коэрцитивной силы Намагниченности Остаточной индукции Магнитной проницаемости Эффекта Баркгаузена | Магнитопорошковый Индукционный Феррозондовый Эффекта Холла Магнитографический Пондеромоторный Магниторезисторный |
Для выявления дефектов типа нарушений сплошности металла в ферромагнитных изделиях применяют все магнитные методы.
Магнитопорошковый метод является одним из самых распространенных методов обнаружения дефектов типа нарушения сплошности металла. Метод имеет следующие преимущества: высокую чувствительность; простоту контроля и возможность проверки различных по форме и размерам деталей на одном и том же дефектоскопе; возможность контроля деталей, находящихся в конструкции; сравнительно высокую производительность контроля.
Качество МНК существенно зависит от способа намагничивания контролируемого изделия. С целью получения максимальной чувствительности и разрешающей способности магнитного метода неразрушающего контроля применяются различные виды намагничивания материалов, среди которых пять основных: продольное (полюсное), циркулярное, комбинированное, параллельное, способом магнитного контакта. Более подробное описание представлено в таблице 1.1.
Таблица 1.1 – Основные виды намагничивания материалов
№ п/п | Вид намагничивания | Рисунок |
Продольным (полюсным) намагничиванием называется такое намагничивание, при котором магнитные силовые линии часть пути проходят по изделию, а часть – по воздуху. Это намагничивание осуществляется путём помещения контролируемого протяжённого изделия правильной формы (цилиндрического, прямоугольного и т.п.) либо между полюсами постоянного магнита (электромагнита), либо в соленоид. После удаления изделия из намагничивающего поля за счёт остаточной намагниченности в изделии возникают два магнитных полюса, N и S | ![]() | |
Циркулярным называется намагничивание, при котором магнитные силовые линии имеют вид концентрических окружностей, расположенных в плоскости, перпендикулярной направлению тока. При отсутствии дефектов магнитные силовые линии замыкаются внутри детали, магнитные полюса не образуются. При наличии дефекта магнитное поле выходит из детали | ![]() | |
Комбинированным называется намагничивание, при котором магнитное поле возбуждается одновременно действием двух или трёх источников полей, например, продольным полем электромагнита и одного или двух циркулярных полей прямого тока. Комбинированное намагничивание обеспечивает максимальную выявляемость дефектов, особенно в деталях сложной формы. | ![]() | |
Параллельным называется намагничивание, при котором провод с намагничивающим потоком расположен параллельно поверхности контролируемой детали (Схема параллельного намагничивания детали с применением: а – обычного кабеля; б – кабеля с полукольцом; 1 – кабель с током; 2 – контролируемое изделие; 3 – щель; 4 – дополнительные магнитопроводы) | ![]() ![]() | |
Способом магнитного контакта называется намагничивание контролируемого изделия прямолинейным или подковообразным постоянным магнитом (электромагнитом) путём перемещения одного из полюсов магнита по поверхности изделия. Между контролируемой поверхностью и прижимаемым к ней полюсом магнита следует обеспечить хороший магнитный контакт. Второй полюс магнита должен быть удалён на возможно большее расстояние от контролируемой поверхности, чтобы уменьшить его размагничивающее действие | ![]() |
Выбор способа намагничивания зависит, в частности, от направления распространения дефектов по детали. Выбирают такой способ намагничивания, при котором угол γ между векторами напряженности магнитного поля и направлением распространения дефектов близок к 90°, при этом достигается наибольшая чувствительность метода. При углах γ < 20-30° чувствительность значительно снижается, а при γ ≈ 0° не обнаруживаются даже очень крупные дефекты. Если неизвестно направление распространения трещин или деталь имеет сложную форму, намагничивание проводят в двух и более направлениях, нанося суспензию и осматривая деталь после каждого намагничивания.
Для выявления различно ориентированных дефектов одной операцией намагничивания рекомендуется применять комбинированное намагничивание.
Магнитная структуроскопия
Все изменения в структуре материала в процессе его изготовления, обработки, зарождения и развития повреждений отражаются в соответствующих изменениях магнитных и электрофизических параметров. Появление этих изменений объясняется разворотом и перемещением доменов и междоменных границ, составляющих в совокупности доменную структуру материала. В основу методов магнитной структуроскопии положена корреляция между некоторыми магнитными и физико-механическими свойствами материалов, когда они одновременно зависят от одних и тех же факторов: химического состава, режима термообработки, напряженного состояния, накопления усталостных повреждений и др. По использованным магнитным информативным параметрам различают следующие разновидности магнитной структуроскопии:
- ферритометрия;
- коэрцитиметрия;
- контроль по остаточной намагниченности;
- контроль по магнитной проницаемости;
- контроль по магнитным шумам.
Наибольшее распространение нашли две первые разновидности магнитной структуроскопии.
Ферритометрия применяется для контроля ферритной фазы, повышенное содержание которой снижает трещиностойкость сталей и особенно сварных соединений. Содержание этой фазы определяет магнитную проницаемость материала, поэтому для ее определения измеряют магнитное сопротивление. Измерительным элементом ферритометра является одно- или двухполюсный феррозондовый магнитный преобразователь, содержащий возбуждающую и измерительную катушки. Магнитный поток, создаваемый возбуждающей катушкой феррозонда, зависит от магнитного сопротивления участка объекта контроля, определяемого содержанием ферритной фазы. Поэтому ее величину оценивают по ЭДС, наведенной при этом в измерительной катушке. Градуировка ферритометров производится по эталонным образцам с известным содержанием ферритной фазы. Большую погрешность при измерении может внести изменение зазора между преобразователем и поверхностью объекта контроля, а так же геометрия этой поверхности (край, кривизна).
Коэрцитиметрия Наиболее широко в структуроскопии используется зависимость между твердостью углеродистых и низколегированных сталей и их коэрцитивной силой. Твердость в свою очередь определяется температурой закалки и отпуска, что позволяет использовать коэрцитивную силу для контроля режимов термообработки стали.
В последние годы коэрцитиметрия стала широко применяться для контроля напряженного состояния металлоконструкций опасных производственных объектов различного назначения, что является весьма актуальным для технической диагностики.
Дата добавления: 2015-12-08; просмотров: 754 | Нарушение авторских прав