Читайте также:
|
|
Операционная система есть специально организованная совокупность программ, которая управляет ресурсами системы (ЭВМ, вычислительной системы, других компонентов ИВС) с целью наиболее эффективного их использования и обеспечивает интерфейс пользователя с ресурсами.
Под механизмами защиты ОС будем понимать все средства и механизмы защиты данных, функционирующие в составе ОС. Операционные системы, в составе которых функционируют средства и механизмы защиты данных, часто называют защищенными системами.
Под безопасностью ОС будем понимать такое состояние ОС, при котором невозможно случайное или преднамеренное нарушение функционирования ОС, а также нарушение безопасности находящихся под управлением ОС ресурсов системы.
Укажем следующие особенности ОС, которые позволяют выделить вопросы обеспечения безопасности ОС в особую категорию:
− управление всеми ресурсами системы;
− наличие встроенных механизмов, которые прямо или косвенно влияют на безопасность программ и данных, работающих в среде ОС;
− обеспечение интерфейса пользователя с ресурсами системы;
− размеры и сложность ОС.
Большинство ОС обладают дефектами с точки зрения обеспечения безопасности данных в системе, что обусловлено выполнением задачи обеспечения максимальной доступности системы для пользователя. Рассмотрим типовые функциональные дефекты ОС, которые могут привести к созданию каналов утечки данных.
1. Идентификация. Каждому ресурсу в системе должно быть присвоено уникальное имя – идентификатор. Во многих
системах пользователи не имеют возможности удостовериться в том, что используемые ими ресурсы действительно принадлежат системе.
2. Пароли. Большинство пользователей выбирают простейшие пароли, которые легко подобрать или угадать.
3. Список паролей. Хранение списка паролей в незашифрованном виде дает возможность его компрометации с после-
дующим НСД к данным.
4. Пороговые значения. Для предотвращения попыток несанкционированного входа в систему с помощью подбора па-
роля необходимо ограничить число таких попыток, что в некоторых ОС не предусмотрено.
5. Подразумеваемое доверие. Во многих случаях программы ОС считают, что другие программы работают правильно.
6. Общая память. При использовании общей памяти не всегда после выполнения программ очищаются участки оперативной памяти (ОП).
7. Разрыв связи. В случае разрыва связи ОС должна немедленно закончить сеанс работы с пользователем или повтор-
но установить подлинность субъекта.
8. Передача параметров по ссылке, а не по значению (при передаче параметров по ссылке возможно сохранение параметров в ОП после проверки их корректности, нарушитель может изменить эти данные до их использования).
9. Система может содержать много элементов (например, программ), имеющих различные привилегии.
Основной проблемой обеспечения безопасности ОС является проблема создания механизмов контроля доступа к ресурсам системы. Процедура контроля доступа заключается в проверке соответствия запроса субъекта предоставленным ему правам доступа к ресурсам. Кроме того, ОС содержит вспомогательные средства защиты, такие как средства мониторинга, профилактического контроля и аудита. В совокупности механизмы контроля доступа и вспомогательные средства защиты образуют механизмы управления доступом.
Принципы и особенности проектирования интегрированных ИС. Система управления информационными потоками как средство интеграции приложений ИС. Методы и средства организации метаинформации проекта ИС.
Первоначально профессиональные СУБД создавались для мощных высокопроизводительных платформ - IBM, DEC, Hewlett-Packard, Sun Но затем, учитывая все возрастающую популярность и широкое распространение персональных компьютеров, их разработчики приступили к переносу (портированию) СУБД в операционные среды desktop-компьютеров (OS/2, NetWare, UnixWare, SCO UNIX).
В настоящее время большинство компаний - поставщиков СУБД развивает три направления своих систем. Во-первых, совершенствование СУБД для корпоративных информационных систем, которые характеризуются большим числом пользователей (от 100 и выше), базами данных огромного объема (их часто называют сверхбольшими базами данных - Very Large Data Base - VLDB), смешанным характером обработки данных (решение задач оперативной обработки транзакций и поддержки принятия решений) и т.д. Это - традиционная область mainframe-систем и приближающихся к ним по производительности RISC-компьютеров.
Другое, не менее важное направление - СУБД, поддерживающие так называемые рабочие группы. Это направление характеризуется относительно небольшим количеством пользователей (камерный характер применения СУБД) с сохранением, тем не менее, всех "многопользовательских" качеств. Системы этого класса ориентированы преимущественно на "офисные" применения, не требующие специальных возможностей. Так, большинство современных многопользовательских СУБД имеет версии системы, функционирующие в сетевой операционной системе Novell NetWare. Ядро СУБД оформлено здесь как загружаемый модуль NetWare NetWare Loadable Module - NLM), выполняющийся на файловом сервере. База данных также располагается на файловом сервере. SQL-запросы поступают к ядру СУБД от прикладных программ, которые запускаются на станциях сети - персональных компьютерах (отметим, что, несмотря на использование файлового сервера, здесь мы имеем дело с RDA-моделью).
Наконец, новый импульс в развитии получило направление desktop-версий СУБД, ориентированных на персональное использование - преимущественно в операционной среде MS Windows (системы этого класса получили неформальное определение "light").
Стремление компаний - поставщиков СУБД иметь фактически по три варианта своих систем, покрывающих весь спектр возможных применений выглядит для пользователей чрезвычайно привлекательно. Действительно, для специалиста исключительно удобно иметь на своем легко транспортируемом портативном компьютере локальную базу данных (постоянно используемую во время командировок) в том же формате и обрабатываемую по тем же правилам, что и стационарную корпоративную базу данных фирмы, куда собранные данные могут быть без труда доставлены.
В последние годы (1987-94) в нашей стране было разработано множество программ, ориентированных на использование СУБД типа PARADOX, FoxPRO, dBASE IV, Clipper. При переходе на более мощную многопользовательскую СУБД у пользователей возникает естественное желание интегрировать уже существующие разработки в эту среду. Например, может возникнуть потребность хранить локальные данные на персональном компьютере и осуществлять к ним доступ с помощью системы FoxPRO, и одновременно иметь доступ к глобальной базе данных под управлением СУБД Oracle. Организация такого доступа, когда программа может одновременно работать и с персональной, так и с многопользовательской СУБД представляет собой сложную проблему по следующей причине.
Как известно, разработчики PC-ориентированных СУБД первоначально использовали свой собственный интерфейс к базам данных, никак не учитывая требования стандарта языка SQL. Лишь впоследствии они стали постепенно включать в свои системы возможности работы с базой данных при помощи SQL. В то же время для истинно многопользовательских СУБД интерфейс SQL - фактический стандарт. При этом возникла задача согласования интерфейсов СУБД различных классов. Она может решаться несколькими способами, но большинство из них имеют частный характер. Рассмотрим наиболее общее решение этой задачи.
Специалисты фирмы Microsoft разработали стандарт Open Database Connectivity (ODBC). Он представляет собой стандарт интерфейса прикладных программ (Application Programming Interface - API) и позволяет программам, работающим в среде Microsoft Windows, взаимодействовать (посредством операторов языка SQL) с различными СУБД, как с персональными, так и с многопользовательскими, функционирующими в различных операционных системах. Фактически, интерфейс ODBC универсальным образом отделит чисто прикладную, содержательную сторону приложений (обработка электронных таблиц, статистический анализ, деловая графика) от собственно обработки и обмена данными с СУБД. Основная цель ODBC - сделать взаимодействие приложения и СУБД прозрачным, не зависящим от класса и особенностей используемой СУБД (мобильным с точки зрения используемой СУБД).
Отметим, что стандарт ODBC является неотъемлемой частью семейства стандартов, облегчающих написание и обеспечивающих вертикальную открытость приложений (WOSA - Windows Open Services Architecture - открытая архитектура сервисов системы Windows).
Интерфейс ODBC (рис.2) обеспечивает взаимную совместимость серверных и клиентских компонентов доступа к данным. Для реализации унифицированного доступа к различным СУБД, было введено понятие драйвера ODBC (представляющего собой динамически загружаемую библиотеку).
Рисунок 2.
ODBC-архитектура содержит четыре компонента:
- приложение;
- менеджер драйверов;
- драйверы;
- источники данных.
Роли среди них распределены следующим образом. Приложение вызывает функции ODBC для выполнения SQL-инструкций, получает и интерпретирует результаты; менеджер драйверов загружает ODBC-драйверы, когда этого требует приложение; ODBC-драйверы обрабатывают вызовы функций ODBC, передают операторы SQL СУБД и возвращают результат в приложение; источник данных (data source) - объект, скрывающий СУБД, детали сетевого интерфейса, расположение и полное имя базы данных и т.д.
Действия, выполняемые приложением, использующем интерфейс ODBC, сводятся к следующему: для начала сеанса работы с базой данных приложение должно подключиться к источнику данных, ее скрывающему; затем приложение обращается к базе данных, посылая SQL-инструкции, запрашивает результаты, отслеживает и реагирует на ошибки и т.д., то есть имеет место стандартная схема взаимодействия приложения и сервера БД, характерная для RDA-модели. Важно, что стандарт ODBC включает функции управления транзакциями (начало, фиксация, откат транзакции). Завершив сеанс работы, приложение должно отключиться от источника данных.
БИЛЕТ № 23
Дата добавления: 2015-12-08; просмотров: 289 | Нарушение авторских прав