Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Induction cooking

Читайте также:
  1. CLEANING, COOKING AND SEWING???
  2. Cooking Terms
  3. Corrections of High Frequency Induction Isoparametric Wireline Logging Tool (VIKIZ) data in high deviated wells filled with conductive muds
  4. I smile. I only been cooking white Thanksgivings since Calvin Coolidge was President.
  5. Induction cooker
  6. Specify cooking time and required minimum internal cooking temperature in all recipes.

Induction cooking uses induction heating to directly heat a cooking vessel, as opposed to using heat transfer from electrical coils or burning gas as with a traditional cooking stove. To be used on an induction cooktop, a cooking vessel must be made of a ferromagnetic metal, or placed on an interface disk which enables non-induction cookware to be used on induction surface.

In an induction cooker, a coil of copper wire is placed underneath the cooking pot. An alternating electric current flows through the coil, which produces an oscillating magnetic field. This field induces an electric current in the pot. Current flowing in the metal pot produces resistive heating which heats the food. While the current is large, it is produced by a low voltage.

An induction cooker is faster and more energy-efficient than a traditional electric hob. It allows instant control of cooking energy similar to gas burners. Because induction heats the cooking vessel itself, the possibility of burn injury is significantly less than with other methods; the surface of the cook top is only heated from contact with the vessel. There are no flames or red-hot electric heating elements as found in traditional cooking equipment. The induction effect does not heat the air around the vessel, resulting in further energy efficiencies; some air is blown through the cooktop to cool the electronics, but this air emerges only a little warmer than ambient temperature.

Induced current can heat any type of metal, but the magnetic properties of a steel vessel concentrate the induced current in a thin layer near the surface, which makes the heating effect stronger. In non-magnetic materials like aluminum, the magnetic field penetrates too far, and the induced current encounters little resistance in the metal. Practical induction cookers are designed for ferromagnetic pots that will stick to a magnet.

Since heat is being generated by an induced electric current, the unit can detect whether cookware is present (or whether its contents have boiled dry) by monitoring how much power is being absorbed. That allows such functions as keeping a pot at minimal boil or automatically turning an element off when cookware is removed from it.

Microwave oven

A microwave oven is a kitchen appliance that heats food by dielectric heating. Accomplished with radiation to heat polarized molecules in food. Microwave ovens heat foods quickly and efficiently. Raytheon invented the first microwave oven after World War II from radar technology developed during the war. Named the 'Radarange', it was first sold in 1947. Raytheon later licensed its patents for a home-use microwave oven that was first introduced by Tappan in 1955.

Microwave ovens are popular for reheating previously-cooked foods and cooking vegetables. They are also useful for rapid heating of otherwise slowly-prepared cooking items, such as hot butter and fats, and melted chocolate. Unlike conventional ovens, microwave ovens usually do not directly brown or caramelize food, since they rarely attain the necessary temperatures to do so. Exceptions occur in rare cases where the oven is used to heat frying-oil and other very oily items (such as bacon), which attain far higher temperatures than that of boiling water. The boiling-range temperatures produced in high-water content foods give microwave ovens a limited role in professional cooking, since it usually makes them unsuitable for achievement of culinary effects where the flavors produced by the higher temperatures of frying, browning, or baking are needed.

Effects on food and nutrients

Several studies have shown that if properly used, microwave cooking does not change the nutrient content of foods to a larger extent than conventional heating, and that there is a tendency towards greater retention of many micronutrients with microwaving, probably due to the shorter preparation time. Microwaving human milk at high temperatures is contraindicated, due to a marked decrease in activity of antiinfective factors.

Any form of cooking will destroy some nutrients in food, but the key variables are how much water is used in the cooking, how long the food is cooked, and at what temperature. Nutrients are primarily lost by leaching into cooking water, which tends to make microwave cooking healthier, given the shorter cooking times it required. Microwave ovens do convert vitamin B12 from the active to inactive form, making approximately 30-40% of the B12 contained in foods unusable by mammals. A single study indicated that microwaving broccoli loses 74% or more of phenolic compounds (97% of flavonoids), while boiling loses 66% of flavonoids, and high-pressure boiling loses 47%, though the study has been contradicted by other studies. To minimize phenolic losses in potatoes, microwaving should be done at 500W.

Spinach retains nearly all its folate when cooked in a microwave; in comparison, it loses about 77% when cooked on a stove, because food on a stove is typically boiled, leaching out nutrients. Steamed vegetables tend to maintain more nutrients when microwaved than when cooked on a stovetop.

Direct microwave exposure

According to the United States Food and Drug Administration's Center for Devices and Radiological Health, a U.S. Federal Standard limits the amount of microwaves that can leak from an oven throughout its lifetime to 5 milliwatts of microwave radiation per square centimeter at approximately 5 cm (2 in) from the surface of the oven. This is far below the exposure level currently considered to be harmful to human health. The radiation produced by a microwave oven is non-ionizing. It therefore does not have the cancer risks associated with ionizing radiation such as X-rays and high-energy particles. Long-term rodent studies to assess cancer risk have so far failed to identify any carcinogenicity from 2.45 GHz microwave radiation even with chronic exposure levels, i.e., large fraction of one's life span, far larger than humans are likely to encounter from any leaking ovens. However, with the oven door open, the radiation may cause damage by heating; as with any cooking device. Every microwave oven sold has a protective interlock so that it cannot be run when the door is open or improperly latched.

There are, however, a few cases where people have been exposed to direct microwave exposure from malfunctioning microwave ovens, or where infants have been placed inside them, resulting in microwave burns.

 

Refrigerator

From Wikipedia, the free encyclopedia

Jump to: navigation, search

"Fridge" and "Freezer" redirect here. For other uses, see Fridge (disambiguation) and Freezer (disambiguation).

For other uses, see Refrigerator (disambiguation).

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (September 2009)

See also: Refrigeration

A side-by side refrigerator

A typical refrigerator with its door open

A refrigerator (colloquially fridge) is a common household appliance that consists of a thermally insulated compartment and a heat pump (mechanical, electronic, or chemical) that transfers heat from the inside of the fridge to its external environment so that the inside of the fridge is cooled to a temperature below the ambient temperature of the room. Cooling is a popular food storage technique in developed countries and works by decreasing or even arresting the reproduction rate of bacteria. The device is thus used to reduce the rate of spoilage of foodstuffs.

A refrigerator maintains a temperature a few degrees above the freezing point of water. Optimum temperature range for perishable food storage is 3 to 5 °C (37 to 41 °F).[1] A similar device which maintains a temperature below the freezing point of water is called a freezer.

The refrigerator is a relatively modern invention among kitchen appliances. It replaced the icebox, which had been a common household appliance for almost a century and a half prior. For this reason, a refrigerator is sometimes referred to as an icebox.


Дата добавления: 2015-10-29; просмотров: 168 | Нарушение авторских прав


Читайте в этой же книге: Edit] History | Edit] General technical explanation | Edit] Features | Edit] Types of domestic refrigerators | Edit] Energy efficiency | Edit] Temperature zones and ratings | Edit] Recycling | edit] Electric machines |
<== предыдущая страница | следующая страница ==>
Induction cooker| Edit] Styles of refrigerators

mybiblioteka.su - 2015-2024 год. (0.01 сек.)