Читайте также: |
|
1.Основные литературы:
1. Ю.В. Скалин «Цифровые системы передачи» М, Радио и связь, 1988г. Л1стр 47 – 94 В.И. Иванова «Цифровые и аналоговые системы передачи», Горячая линия – Телеком, 2005г. Л2 78 – 94, 104-117.
Алматинский колледж связи при КАУ HAND –OUTS | |
Ц и ВОСП 2 кредита Лекция №3 1 час. | 2 с1 2семестр, 09-РЭиС-609-3р. 2011--2012 учебный год Айгараева Гайни Абдибаевна ассоц. проф. КАУ. к.п.н. |
ЛИНЕЙНЫЙ ТРАКТ, РЕГЕНЕРАТОРЫ ЦИФРОВЫХ СИГНАЛОВ ЦСП Особенности передачи цифровых сигналов по линейным трактам.
Линейные коды ЦСП. Принцип регенерации цифрового двоичного сигнала. Построение регенераторов. Параметры регенераторов.
Цифровой линейный тракт как тракт системы передачи должен содержать среду распространения цифрового сигнала и устройства, обеспечивающие требуемое качество передачи. Цифровой сигнал в большинстве случаев достаточно прост по форме: импульс определенной амплитуды и длительности, и в промежуточных пунктах возможно его полное восстановление (регенерация). Поэтому промежуточные пункты цифрового линейного тракта носят название регенерационных. Структурная схема ЦЛТ приведена на рис. 4.1,
Оборудование окончания линейного тракта (ОЛТ) предназначено для формирования линейного цифрового сигнала на передаче и его регенерации на приеме. /Регенерационные пункты РП обеспечивают регенерацию цифрового сигнала на промежуточных участках линейного тракта.
|
Рисунок 1. Цифровой линейный тракт
|
|
Затухание кабельной цепи с увеличением частоты растет, что неизбежно приводит к ограничению полосы частот цифрового сигнала сверху. Такое же воздействие оказывают на сигнал различные элементы входных схем регенератора (трансформаторы, усилители)
Рисунок.2. Влияние ограничения полосы частот на форму двоичного ци фрового сигнала в линейном тракте
'При поступлении импульса на вход участка кабельной цепи возникающие в этой цепи переходные процессы приводят к завалу фронта импульса и затягиванию спада при одновременном снижении амплитуды импульса. Причем, чем длиннее участок цепи, тем меньше величина импульсного отклика на его выходе и тем резче выражены явления завала фронта и затягивания спада. При значительном ограничении полосы частот цифрового сигнала переходные процессы, возникающие в цепи кабеля при прохождении через нее каждого импульса, не успевают закончиться к моменту прихода следующего импульса или пробела. Это приводит к наложению импульсов, особенно сильно ощущаемому для соседних символов цифрового сигнала. Явление наложения символов цифрового сигнала за счет расширения их длительности получило название межсимвольной интерференции.
Межсимвольная интерференция приводит как к изменениям амплитуды, так и временным сдвигам символов это приводит к искажению формы символа.
В линейных трактах, организованных на цепях симметричных кабелей, присутствуют согласующие трансформаторы и усилители, ограничивающие полосу частот цифрового сигнала снизу за счет подавления постоянной и низкочастотных составляющих спектра. Влияние ограничения полосы частот цифрового сигнала снизу показано на рис. 2, б.
Ослабление низкочастотных составляющих приводит к появлению выбросов, полярность которых противоположна полярности символа цифрового сигнала, причем спад выброса затягивается на последующие тактовые интервалы, вызывая межсимвольную интерференцию, снижающую амплитуду импульсов Снижение амплитуды импульсов при возможной амплитуде помехи снижает возможность регистрации импульсов на фоне помех. Следовательно, ограничение полосы частот вызывает искажение цифрового сигнала, что всегда снижает помехоустойчивость. Цифровой сигнал в электрическом кабеле подвергается воздействию помех. Рассмотрим характерные помехи и их влияние на цифровые сигналы.
В целом уровень помех в коаксиальных цепях намного ниже, чем в симметричных.
Линейные коды
В линейном тракте должны передаваться сигналы, обеспечивающие минимальные уровни помех внутри сигнала и переходных помех между соседними трактами. Уровень и мешающее действие указанных помех зависят в общем случае как от ширины и формы энергетического спектра сигнала, так и от ширины и формы амплитудно-частотной характеристики (АЧХ) тракта.
Следовательно, вопрос выбора цифрового сигнала, обеспечивающего необходимую помехозащищенность, сводится к подбору сигнала, спектр которого удовлетворяет определенным требованиям:
- энергетический спектр сигнала должен ограничиваться снизу и сверху, быть достаточно узким, располагаться на сравнительно низких частотах и не содержать постоянной составляющей.
- в составе спектра должна быть составляющая с частотой fт.
- он должен быть представлен в коде,, содержащем информационную избыточность.
Рассмотрим, насколько известные двоичные коды удовлетворяют представленным выше трем требованиям.
Рисунок 3. Двоичные цифровые сигналы и их энергетические спектры:
а) двоичный сигнал со скажностью q =2, б) энергетический спектр сигнала с q=2.
в) двоичный цифровой сигнал с импульсами «затянутыми» на тактовый интервал q=1,
с) энергетический спектр сигнала с q=1.
На рис. 3, а представлена двоичная кодовая комбинация, а на рис. 3 б полученная из нее комбинация в коде ЧПИ. Видно, что символы, используемые в комбинации кода ЧПИ, могут иметь три уровня: —1; 0; +1. В то же время количество информации в кодовой комбинации ЧПИ такое же, как и в двоичном коде, так как она получена из двоичной комбинации. Количество информации в кодовой комбинации, состоящей из элементов трех уровней, больше, чем в двоичной. Избыточность информации при использовании кода ЧПИ позволяет контролировать наличие ошибок в линейном тракте.
Рисунок 4. Кваэитроичный цифровой код с чередованием полярности импульсов ЧПИ и его энергетический спектр
Энергетический спектр случайной импульсной последовательности (рис. 4.4, в) концентрируется в узкой области вблизи частоты 0,5/т, называемой полутактовой. В спектре сигнала отсутствует составляющая с частотой /т, что затрудняет построение систем тактовой синхронизации. Тем не менее отсутствие постоянной составляющей и концентрация спектра в области частот ниже /т позволяют при одинаковых значениях тактовой частоты получить для сигнала с ЧПИ меньшие, чем для двоичного, величины межсимвольных искажений и переходной помехи. Это и определило широкое использование сигнала с ЧПИ в низкоскоростных и средне-скоростных ЦСП.
Сигнал с ЧПИ обладает одним существенным недостатком — при отсутствии передачи по части каналов в сигнале появляются длинные серии 'Пробелов (нулей). В данном случае возможен сбой •системы тактовой синхронизации. Чтобы этого не происходило, следует ограничить в коде ЧПИ число подряд следующих нулей. Эта задача была решена созданием кодов с высокой плотностью единиц (КВП). Наибольшее распространение получил код КВП-З в комбинациях которого допускается не более трех нулей между двумя соседними единицами. Этот код еще называют модифицированным квазитроичным кодом МЧПИ.
Код МЧПИ может быть получен из двоичного по определенному алгоритму, предусматривающему чередование полярности импульсов В двоичного кода, разделенных не более чем тремя нулями. Если число нулей между двумя импульсами В двоичного кода
Рисунок 5. Модифицированный квазитроичный цифровой код с повышенной плотностью единиц МЧПИ (КВП-3)
Регенераторы
Регенерация формы цифрового сигнала. Проходя через среду распространения, цифровой сигнал ослабляется и подвергается искажению и воздействию помех, что приводит к изменению формы и длительности импульсов, изменению случайным образом временных интервалов между импульсами, уменьшению амплитуды импульсов. Задача регенератора восстановить амплитуду, форму, длительность каждого импульса цифрового сигнала, а также величину временных интервалов между соседними символами.
Рисунок 1Принцип регенерации цифрового двоичного сигнала
Структура регенератора представлена на рис. 1 а.
Дата добавления: 2015-10-23; просмотров: 130 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ГЕНЕРАТОРНОЕ ОБОРУДОВАНИЕ | | | Усилитель в схеме регенератора |