|
Особливості будови плазмалеми 13. Особливості хімічного складу. Основу плазмалеми становить ліпопротеїновий комплекс. Вона має товщину близько 10 нм і таким чином є найбільш товстою з клітинних мембран. Зовнв від плазмолеми розташовується надмембранний шар — глікокалікс. Товщина цього шару — 3-4 нм і представляє він собою асоційований з плазмолемою глікопротеїновий комплекс, до складу якого входять різні вуглеводи, що утворюють довгі, розгалуджені ланцюжки полісахаридів, пов’язані з білками і ліпідами, що входять до складу плазмолеми. 14. Різниця між плазмолемою і ендоплазматичними мембранами. Плазмалема має типову для клітинних мембран будову, але на відміну від внутрішніх мембран клітин містить більше вуглеводів, стеролових ліпідів і насичених жирних кислот у складі фосфоліпідів і є більш жорсткою й тугоплавкою. 15. Чим відрізняються мембрани ектоплазматичного типу від мембран ендоплазматичного типу? Зовнішні і внутрішні мембрани відрізняються за якісним і кількісним складом ліпідів; білки, мозаїчно розташовані серед ліпідів, мають чітке розмежування поза- та внутрішньоклітинних доменів 16. Основні функції плазмалеми. Бар’єрна функція — розмежування вмісту клітини від її оточення. Завдяки цій функції забезпечується характерна структура клітинної поверхні і захист від випадкового проникнення речовин у клітину.б) Транспортна функція Мембранний транспорт речовин може здійснюватися як односпрямоване перенесення молекул певної речовини або спільний транспорт двох різних молекул в одному або протилежному напрямках. Мембранний транспорт буває трьох видів: пасивний, активний і транспорт у мембранному упакуванні.в) Рецепторна функція плазмолеми — це сприймання клітиною хімічних сигналів з її мікрооточення. Здійснюється вона переважно за участю спеціальних складних рецепторних білків плазмолеми, які містять вуглеводний компонент. Дальша передача сигналів усередину клітини значною мірою здійснюється з допомогою аденілатциклазної системи. Рецепторна функція плазмолеми визначає взаємовідносини клітин з навколишнім середовищем і з сусідніми клітинами. Вона здійснюється шляхом розпізнання даною клітиною інших клітин і прикріплення до них; розпізнання міжклітинної речовини і прикріплення до її елементів (базальної мембрани, волокон сполучної тканини); взаємодії з сигнальними молекулами (гормонами, медіаторами, цитокінами тощо). 17. Як залежить жорсткість мембрани від її хімічного складу? Жорсткість мембрани залежить від певних факторів. Наприклад, наявність ненасичених кислотних залишків у ліпідах зменшує жорсткіст мембрани. Холестерол навпаки обумовлює жорсткість і стабільність мембран, займаючи вільний простір між гідрофобними хвостами ліпідів і не дозволяючи їм вигинатся. 18. Як зміняться в ластивості плазмолеми, якщо в ній збільшити кількість холестеролу?
Холестерол- третю найпоширенішу ліпідну сполуку мембран. Він становить від 40 до 60 % усіх ліпідів мембрани ссавців. Полярна група ОН- надає його молекулі слабких амфіфільних властивостей. Замкнута структура кілець, будучи гідрофобною та розташовуючись між ацильними (також гідрофобними) доменами інших ліпідів, призводить до менш щільної упаковки ненасичених ацильних ланцюгів, що робить внутрішню частину бішару більш пливкою. Таке зниження в'язкості сприяє латеральному переміщенню ліпідів у площині ліпідного бішару. Збільшення холестеролу спричинює щільнішу упаковку мембрани в ділянці гідрофільних доменів, і одночасно заповнює порожнини, утворені вигином цис-подвійного зв'язку в ацильному ланцюгу ліпіду. Хоча молекули холестеролу здатні легко перескакувати між шарами (явище назвивається "фліп-флоп"), вони, як правило, скупчуються в зовнішньому шарі (потовщуючи його до того ж). ОН- група холестеролу локалізована ближче до головок інших ліпідів. Вона «цементує» гідрофільні частини компонентів мембрани, зменшуючи тим самим її проникність для невеликих молекул.
19. Як змінються властивості плазмолеми, якщо в ній збільшити кількість фосфоліпідів?
Фосфоліпіди є важливою частиною усіх біологічних мембран. Вони обумовлюють пластичні та текучі властивості клітинних мембран та мембранних органоїдів клітини. Отже, при збільшенні фосфоліпідів в плазмолемі, спричинюється зменьшення в’язкості мембрани.
20. Глікокалікс. Функції і розташування.
Зовні від плазмолеми розташовується надмембранний шар глікокалікс. Товщина цього шару близько 3-4 нм, він виявлений практично у всіх тварин клітин, але ступінь його вираженості різна. Глікокаликс представляє собою асоційований з плазмолемоюглікопротеїновий комплекс, до складу якого входять різні вуглеводи.Вуглеводи утворюють довгі, розгалужені ланцюжки полісахаридів, пов'язані з білками і ліпідами, що входять до складу плазмолеми.У глікокаліксі можуть розташовуватися білки, не пов'язані безпосередньо з біліпідним шаром. Як правило, це білки-ферменти, які беруть участь у позаклітинному розщепленні різних речовин, таких як вуглеводи, білки, жири та інші.
21-22. Підмембранний комплекс. Його суть і функції.
Підмембранний комплекс — до підмембранних комплексів клітин належать різноманітні структури білкової природи: мікронитки і мікротрубочки, якґі складають цитоскелет, тобто виконують опорну функцію. Елементи цитоскелета також сприяють закріпленню у певному положенні органел і іїному переміщенню в клітини.
Мікронитки — тонкі (діаметром 4-7 нм) ниткоподібні структури, які складаються із скоротливих білків (актину і міозину та інш). Вони пронизують цитоплазму і беруть участь у зміні форми клітини. Пучки мікрониток одним кінцем прикріплюються до однієй структури (плазматичної мембрани), а другим — до іншої (певної органели, молекули біополімерів)Мікротрубочки — циліндричні структури діаметром 10-25 нм. Беруть участь у формуванні веретена поділу, у внутрішноклітинному транспорті речовини, входять до складу війок, джгутиків.
23. У чому суть рецепторних здатностей плазмолеми?
Рецепторна функція плазмолеми — це сприймання клітиною хімічних сигналів з її мікрооточення. Здійснюється вона переважно за участю спеціальних складних рецепторних білків плазмолеми, які містять вуглеводний компонент. Дальша передача сигналів усередину клітини значною мірою здійснюється з допомогою аденілатциклазної системи. Рецепторна функція плазмолеми визначає взаємовідносини клітин з навколишнім середовищем і з сусідніми клітинами. Вона здійснюється шляхом розпізнання даною клітиною інших клітин і прикріплення до них; розпізнання міжклітинної речовини і прикріплення до її елементів (базальної мембрани, волокон сполучної тканини); взаємодії з сигнальними молекулами (гормонами, медіаторами, цитокінами тощо). Рецептори забезпечують різні таксиси (реотаксис, хемотаксис). Рецепторна функція лежить в основі таких явищ, як запліднення, переміщення клітин, відповідь на гормональні впливи. Вважають, що кожна клітина має рецептори до інсуліну, існують рецептори до лецитину, дофаміну тощо. Завдяки розмежувальній функції клітина може зберігати свою індивідуальність, тоді як транспортна функція надзвичайно важлива для її життя і діяльності. Поєднання цих функцій забезпечує гомеостаз клітини — підтримування постійного складу внутрішнього середовища клітини.
24. Вторинні посередники (медіатори).
Вторинні посередники — молекули, які активують різні молекулярні механізми регуляції клітинних процесів (цАМФ, цГМФ, ДАГ, ІФЗ, йони Кальцію), це клітинні рецептори, у яких енергія подразника трансформується у клітинний процес генерації хімічного сигналу (медіатору), який у свою чергу призводить до генерації потенціалу дії у клітині. Наприклад, інозитол — гідрофільна молекула, що виступає в ролі вторинного посередника, специфічного “передача” зовнішньоклітинного сигналу від клітинної мембрани у внутрішньоклітинне середовище, який здійснює свою функцію, зв’язуючись з внутрішньоклітинними рецепторами.
25. Яку хімічну природу і будову має рецептор біологічної мембрани?
Рецептори біологічної мембрани — білки, молекули, за допомогою яких клітина сприймає ті чі інші сигнали. Наприклад, гормони, що циркулюють в крові, діють тільки на клітини-мішені, у яких є відповідні цим гормонам рецептори. Нейромедіатори (хімічні речовини, що забеспечують проходження нервових імпульсів) також зв’язуються з особливими рецепторними білками клітин-мішеней. Монотопні білки мають одну трансмемьбранну ділянку і часто є рецепторами, які зовнішньоклітинним доменом розпізнають зовнішньоклітинний сигнал, трансмембранним — вбудовані в ліпідний бішар мембрани, внутрішньоклітинний — містить каталітичний, або “активуючий” центр. Інколи рецептор “збирається” з декількох монотопних білків, здатних переміщуватися у площині мембрани та групуватися з утворення одного рецептора з одним механізмом сприйняттся зовнішньоклітинного сигналу та його передачі в середину клітини. Трансмембранні білки, які мають більш ніж одну трансмембранну ділянку, тобто більше одного разу перетинають ліпідний бішар, називаються політопним. Переважна кількість їх належить до групи рецепторів, котрі активують каскад хімічних реакцій, що забеспечують передачу зовнішньоклітинного сигналу в середину клітини.
Транспорт через плазмалему
26. Чим відрізняється пасивний та активний транспорт через біологічну мембрану?
При пасивному транспорті речовини перетинають ліпідний бішар без витрат енергії, шляхом дифузії. Варіантом цього механізму є полегшена дифузія, при якій речовинамдопомагає пройти через мембрану будь-яка специфічна молекула.У цієї молекули може бути канал, що пропускає речовини лише одного типу. Активний транспорт вимагає витрат енергії, так як відбувається проти градієнта концентрації.На мембрані існують спеціальні білки-насоси, в тому числі АТФаза, яка активно вкачують в клітку іони калію (K +) і викачують з неї іони натрію (Na +).
27. За допомогою чого відбувається полегшена дифузія через клітинну мембрану? Механізм цього процесу.
Незалежно від механізму напрямок і швидкість перенесення речовини визначається різницею концентрацій цієї речовини по обидва боки мембрани, а саме перенесення здійснюється за участю спеціальної допоміжної білкової системи, робота якої не вимагає енергетичних затрат. Такий тип транспорту речовин через мембрану є пасивним і називається полегшеною дифузієюЯкщо молекула речовини, що транспортується, не має заряду, то напрямок пасивного транспорту визначається лише різницею концентрацій цієї речовини по обидва боки мембрани (градієнтом концентрації). Та якщо молекула заряджена, то на її транспорт впливають як градієнт концентрації, так і різниця електричних потенціалів на сторонах мембрани (мембранний потенціал). Разом концентраційний і електричний градієнти складають електрохімічний градієнт
28. Уніпорт, симпорт і антипорт.
Уніпорт — просте перенесення певної розчинної речовини з одного боку мембрани на інший. Коли перенесення однієї розчинної речовини залежить від одночасного чи послідовного перенесення іншої в тому самому напрямку це симпорт, а якщо в протилежному — антипорт.
29. Ззовні клітини знаходяться іони, концентрація яких більша у внутрішньому середовищі клітини. Чи можуть вони проникнути в клітину? Механізм цього процесу.
Проілюструемо цей випадок на прикладі йонів Калію, вміст яких за нормальних умов більший у цитоплазмі, ніж у зовнішньому середовищі. Градієнт концентрації йонів Натрію протилежний. Такий розподіл йонів підтримується натрій-калієвим насосом у плазматичній мембрані — білком, що використовує енергію АТФ для закачування іонів Калію у клітину і викачування іонів Натрію з нею. Тому так, іони, концентрація яких більша у внутрішньому середовищі клітини можуть проникнути в клітину, у цьому випадку завдяки натрій-калієвому насосу.
30-33. Перерахуйте іони, вміст яких за нормальних умов більший у цитоплазмі, ніж у зовнішньому; меньший у цитоплазмі, ніж у зовнішньому середовищі; більший у навколишньому середовищі, ніж у цитоплазмі; меньший у навколишньому середовищі, ніж ц у цитоплазмі? К+Na+, Ca2+
34. Яка відмінність між йонними каналами та іонними насосами?
Каналутворювальні білки, як відомо,формують у мембранах пори, заповнені водою. Такі пори, наприклад, у зовнішніх мембранах бактерій, у мембранах мітохондрій і хлоропластів відносно неспецифічні й великі за розміром, тоді як у плазматичних мембранах тварин і рослинних клітин вони менші й високоспецифічні. Майже всі білкові канали слугують для специфічного транспорту іонів, тому їх називають іонними каналами. Систему, в якій шляхом антипорту одразу обидві речовини транспортуються проти градієнтів своїх концентраційназивають іонними насосами. Прикладом може слугувати Na+К+-насос, виявлений у плазматичних мембранах практично всіх тварин.
35. Чи потрібна енергія для виконання функції іонними каналами? Відповідь обґрунтуйте.
Ні.Іонні канали ніколи не працюють сумісно з джерелом енергії. Транспорт, який вони здійснюють, завжди пасивний і дозволяє специфічним іонам, головним чином Na+, К+, Са2+ або С1-, дифундувати за їхнім електрохімічним градієнтом через ліпідний бішар
36. Чи потрібна енергія для виконання функції іонними насосами? Відповідь обґрунтуйте
Потрібна.Джерелом енергії при цьому є АТФ.Na+/К + -АТФаза активно качає іони Na+ назовні, а іони К+ усередину клітини проти їхніх електрохімічних градієнтів: при гідролізі всередині клітини кожної молекули АТФ три іони Na+ викачуються з клітини і два іони К+ накачуються у клітину
37. Типи ендоцитозу і іхнє фізіологічне значення в організмі.
Ендоцитоз – це везикулярне захоплення рідини, макромолекул або невеликих часток у клітину. Можна виділити, як мінімум, три типи ендоцитозу: піноцитоз, або клатриннезалежний ендоцитоз, рецепторно-опосередкований ендоцитоз, або клатринзалежний ендоцитоз, фагоцитоз.Піноцитоз є конститутивним процесом, який забезпечує перенесення речовин рідинної фази позаклітинного середовища: води, дрібних молекул, розчинних білків. На поверхні клітини формуються дрібні інвагінації, які перетворюються на піноцитозні пухирці а після відщеплення (уже всередині клітини) зливаються з утворенням первинних (ранніх) ендосом. Інколи пухирці, що формуються, є великими макропіноцитозними утвореннями, які створюють складчастість мембрани. Рецепторно-опосередкований ендоцитозє специфічним процесом перенесення молекул, до якого залучаються специфічні поверхневі рецептори.Розташування рецепторів у мембранах різних клітин і характер їхнього зв'язування з певними речовинами є вибірковими, тож рецепторно-опосередкований ендоцитоз забезпечує вибіркове зв'язування молекул у позаклітинному розчині. При цьому, якщо специфічний рецептор після зв'язування ліганду й поглинання не повертається до плазмолеми, то клітина стає рефрактерною до цього ліганду.Фагоцитоз визначається як поглинання клітинами відносно великих (до 0,5 мкм) часток за допомогою клатриннезалежного, актинзалежного механізму. Він запускається при взаємодії молекул часток з поверхневим рецептором клітини. Фагоцитоз характерний і для одноклітинних, і для багатоклітинних організмів. Він є ключовим механізмом захисту організму-хазяїна від мікроорганізмів, механізмом загоєння ран і оновлення тканин при їхньому старінні чи пошкодженні, механізмом захисту мікроорганізмів від прямої руйнівної дії антитіл і білків комплементу та цитотоксичних клітин.
38. Біля клітини є грудочка, яка складається з органічних речовин. Чи можливо її наджодження в клітину? Механізм цього процесу.
Шляхом фагоцитозу..Фагоцитоз визначається як поглинання клітинами відносно великих (до 0,5 мкм) часток за допомогою клатриннезалежного, актинзалежного механізму. Він запускається при взаємодії молекул часток з поверхневим рецептором клітини.
39. Як відбувається процес простого ендоцитозу?
Ендоцитоз — везикулярне захоплення рідини, макромолекул або невеликих часток у клітину. Можна виділити щонайменьше три механізми ендоцитозу: піноцитоз, рецепторно-опосередкований, фагоцитоз.
Піноцитоз є конститутивним процесом, який забеспечує перенесення речовин рідинної фази позаклітинного середовища — води, дрібних молекул, розчинних білків. На поверхні клітини формуються дрібні інвагінації, які перетворюються на піноцитозні пухирці, а після відщеплення (уже всередині клітини) зливаються з утворенням первинних (ранніх) ендосом.
Процес піноцитозу може бути досить інтенсивним: у деяких клітинах до 100 % плазматичної мембрани поглинається і відновлюється протягом години. З часом утворені ранні ендосоми (периферійні) зміщуються у глиб клітини та зливаються з первинною власне лізосомою (перинуклеарною) з утворенням вторинної власне лізосоми гетерофагічного типу (які інколи називають пізніми ендосомами, або мультивезикулярними тільцями).
Рецепторно-опосередкований ендоцитоз є специфічним процесом перенесення молекул, до якого залучаються специфічні поверрхневі рецептори. Розташування рецепторів у мембранах різних клітин і характер їхнього зв’язування з певними речовинами є вибірковми, тож Рецепторно-опосередкований ендоцитоз забеспечує вибіркове зв’язування молекул у позаклітинному розчині. При цьому, ящо специфічний рецептор після зв’язування ліганду й поглинання не повертається до плазмалеми, то клітина стає рефрактерною до цього ліганду.
Фагоцитоз визначається як поглинання клітинами відносно великих часток за допомогою клатринозалежного, актинозалежного механізму. Він запускається при взаємодії молекул часток з поверхневим рецептором клітини. Фагоцитоз у ссавців здебільшого здійснюється клітинами трьох типів: нейтрофілами, моноцитами й макрофагами. На поверхні цих клітин виявлені спеціальні рецептори, призначені для розпізнання неантигензв'язувальної ділянки імуноглобулінів або інших молекул, які належать до імунної системи організму-хазяїна, і проведення процесу фагоцитозу. Антитіла й білки комплементу в плазмі оточують поверхню клітини мікроорганізму (цей процес має назву опсонізації), що й спричинює її зв'язування з рецептором фагоциту й сам фагоцитоз. Крім згаданих "професійних " фагоцитів, деякі інші клітини також здатні до фагоцитозу, наприклад, епітеліоцити й фібробласти. Останні, не маючи поверхневих рецепторів професійних макрофагів, використовують для зв'язування рецептори для білків позаклітинного матриксу – фібронектину, ламініну тощо.
40. Рецепторно-опосередкований ендоцитоз.
Рецепторно-опосередкований ендоцитоз є специфічним процесом перенесення молекул, до якого залучаються специфічні поверрхневі рецептори. Розташування рецепторів у мембранах різних клітин і характер їхнього зв’язування з певними речовинами є вибірковми, тож Рецепторно-опосередкований ендоцитоз забеспечує вибіркове зв’язування молекул у позаклітинному розчині. При цьому, ящо специфічний рецептор після зв’язування ліганду й поглинання не повертається до плазмалеми, то клітина стає рефрактерною до цього ліганду.
41. Типи екзоцитозу і ії фізіологічне значення.
Екзоцитоз — процес виведення утворених клітиною макромолекул у позаклітинне середовище за участю транспортних везикул.
Більшість клітин, залежно від їхньої структури й функції, продукують пептидні гормони, травні ферменти, антитіла, білки сироватки, фактори росту та інші молекули, що секретуються. Наприклад, фібробласт секретують такі компоненти базальної мембрани, як колаген, ламінін і фібронектин. Згадані процеси забеспечуються шляхом конститутивної секреції: білки постійно переміщуються в оточені мембранних пухирців від транссітки Гольджі до плазмалеми, з якою вони зливаються та вивильнюють свій вміст шляхом екзоцитозу в міжклітинний проміжок. Конститутивна секреція є постійним процесом, що не вимагає зовнішніх для клітин сигналів.
В ендокринних і екзокринних клітинах, а також у нейронах здійснюється регульована секреція. У цих клітинах білки накопичуються протягом декільког годин (днів) у великих за розміром гранулах, які накопичуються під плазмалемою. Ці гранули не зливаються з плазмолемою та не вивільнюють свій вміст, доки клітина не буде активована для екзоцитозу зо допомогою зовнішніх стимулів, гормональних або нервових.
42. Як відбувається регульований екзоцитоз?
В ендокринних і екзокринних клітинах, а також у нейронах здійснюється регульована секреція. У цих клітинах білки накопичуються протягом декільког годин (днів) у великих за розміром гранулах, які накопичуються під плазмалемою. Ці гранули не зливаються з плазмолемою та не вивільнюють свій вміст, доки клітина не буде активована для екзоцитозу зо допомогою зовнішніх стимулів, гормональних або нервових. Сигнальний імпульс викликає тимчасове надходження іонів кальцію через плазматичну мембрану, що збільшує цитозольну концентрацію Кальцію. Це тимчасове збільшення концентрації іонів Кальцію активує інші внутрішньоклітинні ефекторні молекули, що приводить до злиття з плазмалемою мембрани гранул і вивільнення вмісту останніх у позаклітинне середовище. Резульована секреція вимагає обов’язкової присутності іонів Кальцію, а отже, зв’язування позаклітинного кальцію знижує стимульовану секрецію ендокринниї клітин і нейронів.
43. Що таке облямовані ямки і яка їх роль у транспорті через плазмалему?
Лігандзв'язувальні рецептори накопичуються у специфічних, невеликих за розміром поглибленнях плазмолеми – облямованих ямках – вкритих з боку цитозолю клатрином, після чого ямки формують облямовані пухирці. Клатринова оболонка пухирця відділяється, вивільнений клатрин повертається до плазматичної мембрани, а оголений пухирець (первинна ендосома) зливається з перинуклеарною ендосомою з утворенням наприкінці мультивезикулярного тільця.
Міжклітинні контакти
44. Які компоненти поверхневого апарату клітини забеспечують його адгезивні властивості?
Адгезію визначають як здатність клітин вибірково прикріплюватися одна до одної або до компонентів позаклітинного матриксу.
Реалізують клітинну адгезію спеціальні глікопротеїни плазматичних мембран – молекули адгезії. Саме вони забезпечують прикріплення клітин до компонентів позаклітинного матриксу з формуванням точкових (фокальних) адгезивних контактів і клітин між собою з утворенням міжклітинних контактів. Кожна тканина формується в результаті такої специфічної адгезії клітинних ансамблів, їхніх зв'язків з внутрішнім цитоскелетом і взаємодій з позаклітинним матриксом.
45. Яке значення мають білки роду інтегринів, кадгеринів і селектинів?
Все це молекули адгезії.Інтегрини об'єднує понад 20 відомих складних білків, які забезпечують зв'язок клітин з позаклітинним матриксом Це трансмембранно локалізовані сіалоглікопротеїни, які беруть участь в утворенні трьох типів адгезивних контактів: "клітина-клітина", "клітина-матрикс" і "клітина-розчинний фактор". Інтегрини – гетеродимерні білки: вони складаються з двох нековалентно зв'язаних субодиниць. Кожна субодиниця має цитоплазматичний, трансмембранний і позаклітинний домени. Цитоплазматичний домен взаємодіє з цитоскелетом клітини, позаклітинний – зв'язується з компонентами позаклітинного матриксу. Така взаємодія забезпечує двобічну передачу сигналу, наприклад, актинові філаменти цитоскелета клітин здатні змінювати орієнтацію молекул фібронектину, що секретуються, у позаклітинному матриксі.Інтегрини виявляють активність за наявності іонів кальцію та магнію і беруть участь у передачі сигналів, які регулюють експресію генів і проліферацію
Кадгерини. За їхньою участю формуються гомофільні адгезивні контакти які забезпечуються взаємодією подібних молекул адгезії (в контактах типу "клітина – клітина") за наявності іонів кальцію. До цього класу відносять понад 20 інтегральних високомолекулярних білків. Так, Е-кадгерини експресуються на поверхні епітеліальних клітин у складі проміжних міжклітинних контактів і клітин концептусу до імплантації (увоморулін), а потім на пізніших стадіях розвитку (наприклад, у клітинах нейроектодерми). Вони зменшують рухливість клітин пухлин епітеліальних тканин. N-кадгерин присутній у нейронах, скелетному та серцевому м'язах, клітинах кришталика (бере участь у процесі подовження відростка нейрона). М-кадгеринз'являється в мітогенезі скелетного м'яза на етапі формування трубочок. Р-кадгерин виявлений у кератиноцитах і клітинах плаценти.Другий клас молекул адгезіїскладають імуноглобуліни, які здійснюють як гомофільні, так і гетерофільні адгезивні контакти, в яких беруть участь адгезивні молекули різних класів (це контакти типу "клітина-клітина" і "клітина-субстрат").Селектини — велика група кальцієзалежних клітин позаклітинного матриксу з наявністю лектиноподібного домену, які здатні забеспечувати гетерофільну адгезію.
46. Охарактеризуйте адгезивний контакт.
Серед адгезивних контактів на сьогоднішній день описано два типи: міжклітинні контакти та контакти між клітинами та матриксом. У кожному з них виділяють три структурні ділянки. Перша містить актинові філаменти цитоскелета, друга є пластичною структурою, яка зв”язує філаменти з мембранами, третя складається з мембранних компонентів, які безпосередньо беруть участь у адгезивних взаємодіях. Усі адгезивні контакти мають багато спільних компонентів, однак в кожного з них є спеціалізовані білкию Так, кадгерини виявляються лише в міжклітинних контактах, а інтегрини — і в міжклітинних, і в клітинно-матриксних.
Точкові (фокальні) адгезивні контакти реалізують прикріплення клітин до молекул адгезії позаклітинного матриксу. В їхньом утворенні беруть участь трасмембранні рецептори — інтегрини, які об”єднують позаклітинні і внутрішньоклітинні структури. Характер розподілу макромолекул адгезії, таких як, наприклад, фібронектин або вітронектин, у позаклітинному матриксі визначає місце остаточної локалізації клітини у тканині, що формується.
Міжклітинні адгезивні контакти. У багатьох тканинах адгезивні контакти з”єднують актинові філаменти цитоплазми підмембранних комплексів сусідніх клітин. У епітеліальних тканинах вони утворюють безперервний пояс — адгезивний пояс — навколо кожної клітини нижче щільного контакту. Мембрани сусідніх клітин при цьому розділені проміжком шириною 10-20 нм, заповненим аморфним або фібрилярним матеріалом.
47. Охарактеризуйте фокальний контакт.
Точкові (фокальні) адгезивні контакти реалізують прикріплення клітин до молекул адгезії позаклітинного матриксу. В їхньом утворенні беруть участь трасмембранні рецептори — інтегрини, які об”єднують позаклітинні і внутрішньоклітинні структури.
Характер розподілу макромолекул адгезії, таких як, наприклад, фібронектин або вітронектин, у позаклітинному матриксі визначає місце остаточної локалізації клітини у тканині, що формується.
Крім інтегринів до формування адгезивних контактів залучені а-актин (бере участь у зв”язуванні актину з клітинною мембраною), вінкулін (зв”язує цитоплазматичну поверхню мембрани в адгезивних точкових контактахз із корковим Ф-актином), талін (зв”язує інтегрин і вінкулін).
49. Ультраструктура десмосоми.
Десмосоми є найпоширенішим типом міжклітинних контактів і найскладніше організованою спеціалізованою структурою клітинної адгезії, яка з'єднує клітинну мембрану з проміжними філаментами цитоскелета. Десмосоми та проміжні філаменти формують неперервну мережу, яка пронизує всю тканину й забезпечує значну стійкість тканини до розтягнення. У більшості епітеліальних клітин до десмосом прикріплюються цитокератинові філаменти, тоді як у кардіоміоцитах – десмінові. Десмосоми об'єднують дві форми з'єднань. Одна з них – цитоплазматична пластинка – здійснює зв'язок проміжних філаментів клітини з плазмолемою, друга – зв'язок плазмолеми з позаклітинним міжмембранним матеріалом () у межах десмосоми. Білки проміжних філаментів прикріплюються до внутрішньої цитоплазматичної пластинки, утвореної комплексом білків – десмоплакинів і плакоглобінів, які зв'язані з цитоплазматичними хвостами трансмембранних білків родини кадгеринів – десмоглеїнами й десмоколінами. Ділянки клітинних мембран, що входять до складу десмосоми, розділені шаром десмоглії товщиною 20–30 нм. З внутрішнього боку до плазмолеми прилягає цитоплазматична пластинка товщиною 10–40 нм із вплетеними в неї проміжними філаментами.
50. Будова і роль десмосом.
Десмосоми є найпоширенішим типом міжклітинних контактів і найскладніше організованою спеціалізованою структурою клітинної адгезії, яка з'єднує клітинну мембрану з проміжними філаментами цитоскелета. Десмосоми та проміжні філаменти формують неперервну мережу, яка пронизує всю тканину й забезпечує значну стійкість тканини до розтягнення. У більшості епітеліальних клітин до десмосом прикріплюються цитокератинові філаменти, тоді як у кардіоміоцитах – десмінові. Десмосоми об'єднують дві форми з'єднань. Одна з них – цитоплазматична пластинка – здійснює зв'язок проміжних філаментів клітини з плазмолемою, друга – зв'язок плазмолеми з позаклітинним міжмембранним матеріалом () у межах десмосоми. Білки проміжних філаментів прикріплюються до внутрішньої цитоплазматичної пластинки, утвореної комплексом білків – десмоплакинів і плакоглобінів, які зв'язані з цитоплазматичними хвостами трансмембранних білків родини кадгеринів – десмоглеїнами й десмоколінами. Ділянки клітинних мембран, що входять до складу десмосоми, розділені шаром десмоглії товщиною 20–30 нм. З внутрішнього боку до плазмолеми прилягає цитоплазматична пластинка товщиною 10–40 нм із вплетеними в неї проміжними філаментами.
У десмосомах усіх клітинних типів присутні білки плакоглобін, десмоплакіни, десмоглеїни, десмоколіни, які формують дві лінія зв’язку в десмосомі.
Таким чином, лінкери внутріньоклітинними доменами зв’язуються з пластинкою, а позаклітинним — між собою, утримаючи разом суміжні плазматичні мембрани “об’єднуючи” проміжні філаменти кожної клітини в безперервну мережу всього епітеліального шару. Такий зв’язок є дуже важливим. Він підтримує структурну цілісність тканини і в комплексі з проміжними філаментами налає їй пружності.
51. Будова і роль напівдесмосом.
Напівдесмосоми морфологічно подібні до десмосом, але за функціональними й біохімічними особливостями це різні структури. По-перше, вони з’єднують не плазматичні мембрани сусідніх клітин, а базальну поверхню клітин з базальною мембраною позаклітинного матриксу. По-друге, проміжні філаменти прикріплюються до десмосомних пластинок бічною поверхнею, а напівдесмосоми — закінчуються в них. По-третє — трансмембранні білки, що прикріплюють клітину до матриксу, належать до родини інегринових рецепторів, а не до кадгеринів, як у десмосомах. По-четверте, цитоплазматична пластинка напівдесмосоми містить пемфігоїдний антиген — Са2+ - зв’язувальний трансмембранний білок із родини кадгеринів. При захворювання на пухирчатку неакантолітичну до пемфігоїдного антигену виробляються антитіла, які взаємодіють з ним. Це призводить до відшарування епітелію шкіри від базальної мембрани та утворення пухирців.
Напівдесмосоми зустрічаються у кератиноцитах базального шару епідермісу, а також у міоепітеліальних клітинах.
52. Будова і функції щільного контакту.
Цей тип міжклітинних з’єднань широко представлений в епітеліальній тканині. Він робить суттєвий внесок у функціональну асиметрію епітеліоцитів і впливає на характер вибіркової проникності, зумовлюючи структурну асиметрію плазматичної мембрани.
Молекулярний склад щільних контактів ще недостатьно вивчений. З погляду морфології вони є безперервними ланцюжками трансмембранних білків — точковими з’єднаннями між зовнішніми шарами сусідніх плазматичних мембран. Такі з’єднання непроникні для великих молекул, а проникність для малих молекул та іонів зменьшується ів логарифмічній залежності від кількості таких контактів.
Мембрана, обмежена до зовнішнього середовища — апікальна мембрана — активно транспортує певні молекули до клітини. Друга поверхня клітин (базолатеральна) складається з двох компонентів: латеральної мембрани — поверхні, що стискається з сусідніми клітинами, і базальної мембрани — поверхні контактування з позаклітинною рідиною і позаклітинним матриксом. Це означає, що певні клітинні білки (наприклад, переносники вуглеводів і амінокислот, іонні насоси тощо) розташовані або лише на апікальній, або на базолатеральній поверхні клітин. Крім того, аналіз взаємодії епітеліальних клітин з різними мембранними білками вірусів, виявив їх вибіркове зв'язування або з апікальною, або з базолатеральною плазматичними мембранами. Відбруньковування вірусних часток також здійснюється від різних поверхонь інфікованих клітин. Це є можливим лише за умови підтримання асиметрії плазматичних мембран, що й забезпечується щільними контактами, які перешкоджають дифузії мембранних білків між апі кальною та базолатеральною поверхнями мембрани й щільно змикають сусідні клітини, попереджаючи проходження розчинних молекул між ними.
53. Будова і роль нексусів.
Нексус-щілинний контакт.Через таке зєднання з одніє клітини в іншу проходять водорозчинні невеликі молекули.Такими контактами з’єднано більшість клітини людини.В нексусі між плазмо лемами сусідніх клітин є простір шириною 2-4нм.Обидві плазмо леми з’єднані між собою за допомогою конексонів-гексагональними білковими структурами, кожна з яких складається з 6трансмембранних білків.Щілинні контакти відіграють важливу роль в реалізації метаболічних кооперацій клітин; контролюють проникність між взаємодіючими клітинами, регулюють рівень внутрішньоклітинного Са2+, беруть участь у процесах регуляції росту та розвитку клітин (через щілинні контакти проходять низькомолекулярні речовини, що регулюють зазначені процеси), а також забезпечують поширення збудження (перехід іонів між м'язовими клітинами міокарду та між гладенькими міоцитами).
54. Будова і роль щілинних контактів.
Найпоширенішими є міжклітинні з'єднання комунікаційного типу. Через такі з'єднання з клітини в клітину можуть переходити іони й невеликі молекули (до 1,5 кДа), у тому числі й внутрішньоклітинні месенджери, що забезпечує електричне й метаболічне спряження контактуючих клітин. Щілинний контакт складається з двох конексонів двох сусідніх плазматичних мембран, між якими є щілина шириною 2–4 нм (звідки й назва "щілинний"). Кожний конексон складається з щести трансмембранних білків (280 амінокислотних залишків, чотири рази перетинають мембрану) з водною порою в центрі, діаметром 1,5 нм. Два конексони сусідніх клітин з'єднуються у міжмембранному просторі з утворенням каналу між клітинами.
55. Будова і роль синапсів.
На відміну від інших типів клітин, нейрони можуть специфічно контактувати з багатьма різними типами клітин: іншими нервовими клітинами, клітинами залоз, м'язовими клітинами тощо, які можуть бути розташовані при цьому на великій відстані. Цей зв'язок відрізняється високою швидкістю й точністю, які забезпечуються спеціалізованими структурними утвореннями – синапсами (від гр. зв'язок, застібка або гачок). Три обов'язкові елементи синапсу: пресинаптичне закінчення та постсинаптична сприймаюча ділянка, синаптичної щілини (між пресинаптичною та постсинаптичною мембранами). Синапс- спеціалізований міжклітинний контакт, що забезпечує передачу сигналів з однієї клітини на іншу, сформований клітинами збудливих тканин (нервовими клітинами між собою (синапс) і нервовими клітинами та м'язовими клітини (нервово-м'язовий синапс)). Види:-хімічний-електричний.
56. Будова і роль плазмодесм у рослинних клітинах.
Плазмодесми — мікроскопічні цитоплазматичні містки, з’єднуючі сусідні клітини рослин. Плазмодесми проходять через канальці порових ділянок первинної клітинної стінки. Навідміну від десмосом тварин, плазмодесми рослин створюють прямі цитоплазматичні міжклітинні контакти, що забеспечують міжклітинний транспорт іонів і метаболітівю Сукупність клітин, з’єднаних плазмодесмами, створюють симпласт.
Плазмодесми створюються про поділі клітини, під час створення первинної клітинної стінки. Плазмодесми являють собо тонкі трубчасті цитоплазматичні канали діаметром 20-40 нм, що поєднують сусідні клітини; плазмалема, що вистиляє порожнину канальців безпосередньо переходить в плазматичні мембрани сусідніх клітин. Звичайно в просвіті сформованих плазмодесм знаходиться тонка ціліндична структура — десмотубулула, що є продовженням ЕПС обох клітин. Простір між зовнішною поверхнею десмотубули і плазмалемою заповнено цитозолем.
Вважається, що плазмодесми можуть створювати міжклітинний транспорт метаболітів.
57. Які типи контактів забеспечують надходження до клітини органічних сполук?
Комунікативні контакти (щілинні, плазмодесми)
58. Як молекули можуть переміщуватися зі однієї клітини до іншої?
Найпоширенішими є міжклітинні з'єднання комунікаційного типу. Через такі з'єднання з клітини в клітину можуть переходити іони й невеликі молекули (до 1,5 кДа), у тому числі й внутрішньоклітинні месенджери, що забезпечує електричне й метаболічне спряження контактуючих клітин. Щілинний контакт складається з двох конексонів двох сусідніх плазматичних мембран, між якими є щілина шириною 2–4 нм (звідки й назва "щілинний"). Кожний конексон складається з щести трансмембранних білків (280 амінокислотних залишків, чотири рази перетинають мембрану) з водною порою в центрі, діаметром 1,5 нм. Два конексони сусідніх клітин з'єднуються у міжмембранному просторі з утворенням каналу між клітинами.
№2 “Цитозоль”
1. Хімічний склад цитозолю.
Основною хімічною речовиною цитозолю є вода, кількість якої може змінюватись в залежності від віку організму, а також від функціонального стану клітини. В ембріональних клітинах кількість води може сягати більше 90%, при старінні кількість води в клітинах у чоловіків може зменшуватись до 55%, а у жінок до 45%. Біля 20% цитозолю складають білки. Білки цитозолю - це здебільшого ферменти, які каталізують реакції проміжного обміну - комплекс хімічних реакцій, за допомогою яких клітина розщеплює одні малі органічні молекули (енергія, яка утворюється при цьому накопичується у вигляді АТФ) і синтезує інші, які відігрють роль попередників макромолекул. Тому цитозоль і називають системою проміжного обміну клітини. Крім ферментів, що каталізують реакції проміжного обміну, тут є білки, що зумовлюють процесинг (дозрівання) синтезованих білків, стресорні білки, шаперони тощо. В цитозолі можуть накопичуватись ліпіди, в основному нейтральні жири, що утворюють краплиноподібні включення. В цитозолі є також жирні кислоти та спирти. Вуглеводи представлені моно-, ди- та полісахаридами, зокрема, глікоген теж утворює включення. В цитозолі присутні всі три типи молекул РНК - інформаційні, рибосомні, транспортні, які завжди існують у комплексі з білками. і-РНК може існувати в цитозолі у вигляді інформосом - невеличких гранул, у яких вона пов`язана з білками. Вільні цитозольні інформосоми відрізняються від інформосом, які зв`язані з рибосомами за складом білків і містять репресор трансляції. Можливо зміна білків в інформосомі є необхідною умовою приєднання її до рибосоми.р-РНК в цитозолі входить до складу субодиниць рибосом. Мабуть і т-РНК утворює комплекси з білками. Це показано, наприклад, в яйцеклітинах амфібій під час овогенезу. В таких рибонуклеопретеїдних комплексах т-РНК може зберігатися дуже довго, у амфібій до стадії гаструляції ембріогенезу. Зараз у цитозолі знайдені і невеличкі кільцеві молекули ДНК, так звані еукаріотичні плазміди. Їх походження й роль не завжди з`ясовані, але у великій кількості вони присутні в клітинах злоякісних пухлин і в бластомерах на ранніх стадіях ембріогенезу. Отже в цитозолі наявні всі класи біополімерів. Тут присутні і мономери цих макромолекул: амінокислоти, нуклеотиди. Крім органічних сполук в цитозолі є різні неорганічні іони: (Na, K, H, Ca, Cl, HCO3, (HPО4)2–, H2PO4–, HSO4–) тощо. Наявні також мікроелементи, які необхідні для нормального функціонування клітини.Можна вважати, що цитозоль є складним колоїдним розчином, що містить дисперсне середовище(розчинник) і дисперсну фазу (дрібні частинки - завись у дисперсному середовищі)
2. Фізико-хімічні властивості цитозолю.
Цитозоль є дуже цікавою системою клітини, він може поводитись як тверде тіло, бо має здатність до пружної деформації, і як рідина, оскільки спроможний до плинності. Агрегатний стан цитозолю може змінюватиь залежно від дії факторів зовнішнього середовища або внутрішніх потреб клітини. Він може перебувати у двох агрегатних станах: золю (більш рідкому) і гелю (густішому, гелеподібному), тобто поводити себе як тиксотропний гель.
3. Від чого залежить в’язкість цитозолю?
В’язкість цитозолю може змінюватися окремо в різних ділянках клітини, що впливає на реакції, які там відбуваються. Цитозоль здатний поводити себе як тиксотропний гель. Коли уитозоль перебуває в стані гелю, то частинки дисперснох фази з’єднані між собою в тривимірну сітку. Дисперсне середовище міститься в порожнинах цієї сітки, таким чином уся система пов’язана плинності. В стані золю тривимірна сітка частково руйнується і система вцілому стає більш плинною.
4. Які механізми забезпечують переходи золь-гель?
Гель-золь переходи залежать від багатьох факторів (тиск, температура, концентрація іонів). Велику роль у таких переходах відвграють білки цитозолю, особливо актин (білок цитоскелету, який входить до складу мікрофіламентів). В цитозолі його може бути до 10% від загальної кількості білків.
5. Які метаболічні процеси відбуваються в цитозолі?
Через цитозоль відбуваються майже всі транспортні процеси, процеси дифузії різних речовин. Локалізовані ферменти залучені до синтезу й розщеплення амінокислот, нуклеотидів, жирних кислот і вуглеводів (реакції проміжного обміну). Анаеробне розщеплення глюкози (фруктози, галактози) – гліколіз.
6-7. Які хімічні реакції відбуваються в цитозолі?
Саме в цитозолі відбувається анаеробне розщеплення глюкози (також фруктози або галактози) - гліколіз, внаслідок якого утворюються дві молекули АТФ та трикарбонові сполуки. Останні можуть переміщуватися в мітохондрії, де відбувається їх окислення з утворенням 36 молекул АТФ та СО2 і Н2О.В цитозолі на вільних рибосомах або полісомах починається синтез усіх білків клітини. Підкреслимо, що синтез секреторних білків, білків призначених для позаклітинного матриксу, плазматичної мембрани, елементів вакуолярної системи починаючись у цитозолі, завершується на мембранах гранулярної ендоплазматичної сітки. Процес же синтезу білків для власних потреб цитозолю (ферментів синтезу й розщеплення амінокислот, нуклеотидів, вуглеводів; шаперонів тощо), білків ядра, пероксисом та певної частини мітохондріальних білків повністю відбувається в цитозолі. Слід наголосити, що синтез будь яких білків у цитозолі відбувається за допомогою органел, які називають рибосомами.Білки в процесі трансляції або одразу після її закінчення повинні набути правильної вторинної, третинної та четвертинної структури. Від правильної просторової організації білка залежить його функціональна активність. Білки, які мають неправильно згорнутий поліпептидний ланцюг, є функціонально неактивними. Процес згортання поліпептидного ланцюга в правильну тривимірну структуру називається дозріванням або фолдінгом білків. Крім того, цитозоль є місцем, де здійснюються специфічні посттрансляційні модифікації білків та, за певних умов, їх специфічний розпад (детальніше – у розділі біосинтез білку.
8. Яка функція шаперонів та фолдаз у цитозолі?
Шаперони: вони являються білками, основна функція яких залежить у відновленні третинної структури пошкоджених білків, а також утворення та дисоціація білкових комплексів. Температура сильно впливає на холдинг білка. Шаперони здатні синтезувати тільки що утворених білків, коли вони виходять з рибосоми. Фолдази: приймають участь у згортанні поліпептидних ланцюгів. Формування та ізомеризація дисульфідних зв’язків еукаріот.
9. Функції цитозолю
Через цитозоль відбуваються майже всі транспортні процеси, процеси дифузії різних речовин. Локалізовані ферменти залучені до синтезу й розщеплення амінокислот, нуклеотидів, жирних кислот і вуглеводів (реакції проміжного обміну). Анаеробне розщеплення глюкози (фруктози, галактози) – гліколіз. У цитозолі починається синтез усіх білків клітини (на вільних рибосомах або полісомах)
10. У чому полягає буферна функція цитозолю? Розчин хімічних сполук, які протидіють зміні активності реакції розчину. Буферні системи підтримують рівень рН доти, доки продукти, які надійшли, не будуть виведені або використані в метаболічних процессах
Розділ №3 “Включення”
1.Типи включеннь за функціональним призначенням:
Трофічні (різного роду поживні ревочини), секреторні (різні за хімічною природою речовини, які синтезуються клітиною, виводяться з неї і функціонують за її межам), екскреторні (різноманітні продукти метаболізму, які залишилися на певний час у клітині), пігментні (різні забарвлені речовини, які зустрічаються у цитоплазмі й надають клітині певного кольору), захисні (утворюються в клітинах рослин і тварин і слугують для захисту організму).
2. Трофічні включення рослинних клітин.
Різного роду запасні поживні речовини. В сприятливі для годівлі організми сезони живі організми споживають поживних речовин більше, ніж їм потрібно для життєдіяльності. У цьому випадку надлишкові поживні речовини відкладаються у клітинах у вигляді включень, які називають трофічними.
Деякі частини тіла рослин спеціально призначені для запасання поживних речовин — бульби, потовщені кореневища, ендосперм насіння.
Трофічні включення — крохмаль, олія, алейронові зерна.
3. Трофічні тваринних рослинних клітин.
Різного роду запасні поживні речовини. В сприятливі для годівлі організми сезони живі організми споживають поживних речовин більше, ніж їм потрібно для життєдіяльності. У цьому випадку надлишкові поживні речовини відкладаються у клітинах у вигляді включень, які називають трофічними.
Деякі органи тварин спеціально призначені для запасання поживних речовин — жирова тканина, наприклад, або яйцеклітини.
Трофічні включення - жирові краплини, глікогену, жовткові включення.
4. Секреторні включення.
Різні за хімічною природою речовини, які синтезуються клітиною, виводяться з неї та функціонують поза її межами. До таких включень належать: секреторні гранули з травними ферментами у клітинах підшлункової залози, а також секреторні гранули з гормонами, які «очікують» відповідного сигналу для виведення з клітини. Найчастіше існують у вигляді секреторних везикул чи пухирців, оточених однією мембраною.
5. Які включення можуть виконувати захисну функцію?
Захисні включення утворюються в клітинах тварин і рослин і слугують для захисту організмів. Наприклад деякі рослини запасають включення глікозидів чи алкалоїдів, які є отруйними для тварин, таким чином рослини захищають себе від поїдання тваринами. + Включення пігменту меланіну для захисту шкіри від шкідливих УФ променів. Пігменти камуфляжу.
6. Роль пігментних включень.
Пігменти — захисі включення, різні забарвлені речовини, які зустрічаються у цитоплазмі й надають клітині певного кольору. Можуть бути ендогенного і екзогенного походження. До пігментних відносять, наприклад, зерна меланіну в меланоцитах шкіри, включення ліпофусцину в нейронах, а також інколи гемоглобін, міоглобін, хлорофіл, каратиноїди.
7. Типи включень за хімічною природою.
За хімічною природою включення можуть бути: білкові (алейронові зерна у рослин), вуглеводні (крохмальні зерна у рослин чи глікогенові включення у тварин), ліпідні (жирові краплини в цитоплазмі деяких клітин), терпеноїдні (ефірні олії, смоли, каучук у клітинах рослин), глікозиди, алкалоїди, мінеральні (кристалі оксалату кальцію або карбонату кальцію в клітинах деяких рослин).
8. Жирові включення.
Є основними запасними речовинами, які використовуються в процесах енергетичного обміну. При голодуванні вони розщеплюються і виділяють велику кількість енергії, яка запасється у вигляді АТФ і використовується для енергетичних потреб клітини.
9. Білкові включення.
Вони є в клітинах багатьох рослин. Білок може бути у вигляді аморфної маси, або мати форму кристалічних утворень (кристалоїди). Білкові кристалоїди локалізуються в цитоплазмі або в клітинному соку, інколи в ядрі або пластидах. Також білкові включення можуть утворювати глобо їди – структури сферичної форми, побудовані з солей кальцію та магнію.
10. Вуглеводневі включення.
Полісахариди, мономерами якої є глюкоза. У разі недостачі надходження поживних речовин вони розпадаються на молекули глюкози, які потім включаються в процес гліколізу. При цьому вивільняється енергія, яка відкладається у вигляді АТФ і використовується в енергетичних потребах клітини.
11. Мінеральні включення.
Зустрічаються в різних формах у багатьох рослин, мають форму призматичну, октаедричну, голчасту. Найчастіше містяться в центральній вакуолі, але можуть локалізуватись і в цитоплазмі. Найпоришеніший вид включень — включення оксалату кальцію., що утворюється в результаті взаємодії щавлевої кислоти з йонами Кальцію.
12. Червоні, жовті, коричневі пігментні включення.
Пігментні включення — зерна меланіну в меланоцитах шкіри, включенні ліпофусцину в нейронах, гемоглобін, міоглобін, каратиноїди.
13. Маркери старіння клітин.
Включення ліпофусцину відносять до пігментних включень. Вони наявні в багатьох клітинах тваринного організму, особливо їх багато у нервових клітинах. Їхня кількість зростає при старінні, тому ліпофусцин називають пігментом старіння.
Розділ №4 “Цитоскелет, центріолі”.
1. Ультраструктурна будова мікротрубочки.
Мікротрубочки — складаються з білка тубуліну. Це глобулярні поліпептиди з молекулярною масою 54 кДа. Одна молекула альфа- та одна бета-тубуліну утворюють димер, димери з’єднуються один з одним «голова у хвіст» і формують протофібрилу. Тринадцять таких протофібрил розміщуються по колу й формують стінку мікротрубочки. Зовнішній її діаметр складає ~25 нм, внутрішній ~15 нм. Збирання цих компонентів відбувається у ЦОМТах.
2. Ультраструктурна будова актинових філаментів.
Мікрофіламенти побудовані з білка актину, молекула якого являє собою глобулярний поліпептид, що складається з 375 амінокислот. Коли молекули актину формують мікрофіламент, то вони об’єднуються одна з одною “голова у хвіст” у волокнисту структуру.
3. Ультраструктурна будова мікрофіламентів.
Довгі нитчасті структури, діаметром 7 нм, побудовані з білка актину, молекула якого складається з 375 амінокислот. Коли молекули актину формують мікрофіламент, то вони об’єднуються одна з одною «голова у хвіст» у волокнисту структуру. Молекули актину в ній упаковані у щільну спіраль, на один виток якої припадає приблизно два мономери актину.
4. Що таке тредмілінг?
Елементи цитоскелету полярні, тобто мають «+»-кінець і «-»-кінець. До «+»-кінця молекули приєднуються, а від «-»-кінця від’єднуються. Тому на «+» йде збирання, а на «-» розбирання – такий процес і називається тредмілінг.
5. Ультраструктурна будова проміжних філаментів.
Проміжні філаменти — це елементи цитоскелету, нерозчинні білкові фібрили діаметром від 8 до 12 нм. Таким чином вони тонші за мікротрубочки (25 нм) і товстіші за актинові філаменти (7 нм), за що і отримали свою назву. Проміжні філаменти складаються із різних білків, але всі вони мають спільний загальний план будови. Спочатку дві молекули відповідного білка об’єднуються в димер. С-кінці обох білкових молекул розташовуються на одному кінці димера, а N-кінці — на іншому. Потім два димера об’єднуються в антипаралельний тетрамер. Тетрамери далі складаються «голова у хвіст» і формують протофіламент, а пучок з 8 таких протофіламентів складають проміжне волокно.
6. Які функції виконють проміжні філаменти?
Проміжні філаменти — це елементи цитоскелету, нерозчинні білкові фібрили діаметром від 8 до 12 нм. Таким чином вони тонші за мікротрубочки (25 нм) і товстіші за актинові філаменти (7 нм), за що і отримали свою назву[1]. Проміжні філаменти складаються із різних білків, але всі вони мають спільний загальний план будови. Ці елементи цитоскелету забезпечують клітині механічну стійкість, беруть участь у формуванні міжклітинних контактів: десомосом та гемідесмосом, закріплюють окремі частини клітини (наприклад ядро) у певному положенні в цитоплазмі, також входять до складу ядерної ламіни (пластинки). На відміну від мікротрубочок і мікрофіламентів проміжіні філаменти не беруть участі у внутрішньоклітинному транспорті, не можуть приєднувати нуклеотидтрифосфати, і є відносно статичними структурами.
7. Як відрізняються за хімічним складом проміжні філаменти в клітинах різних тканин?
Кератини — епітеліальні клітини;
Віментини — клітини сполучних тканин;
Десмін — м’язові клітини;
Гліальний фібрилярний кислий білок — клітини нейроглії;
Білок нейрофіламентів — нейрони;
Ламіни А, Б, С — ядерна ламіна.
10. Яким чином мікротрубочки можуть зумовлювати рух внутрішньоклітинних компонентів?
Мікротрубочки можуть переміщувати внутрішньоклітинні компоненти або за рахунок збиранна-розбирання, або за рахунок білків-моторів, які рухаються по мікротрубочках, як по рейках. До таких білків належать динеїн та кінезин. Вони одним кінцем прикріплюються до мікротрубочок, а іншим – до внутрішньоклітинної структури, яку слід перемістити. Використовуючи енергію гідролізу АТФ, білки-мотори рухаються мікротрубочці й, будучи зв’язаними іншим кінцем з органелою тягнуть її за собою. Динеїн рухаеться по мікротрубочці від + до -, а кінезин від – да + кінця.
11. Яким чином мікрофіламентів можуть зумовлювати рух внутрішньоклітинних компонентів?
Участь у переміщенні внутрішньоклітинних компонентів за рахунок збирання-розбирання (тредмілінгу) ті за рахунок транспорту по них «як по рейках». Беруть участь в утворенні псевдоподій, за допомогою яких відбуваеться переміщення ряду клітин.
12. Які функції мають білки динеїн та кінезин?
Динеїн та кінезин – моторні білки біологічних клітин, що переводять хімічну енергію АТФ в механічну роботу руху. Вони транспортує різноманітні клітинні «вантажі», рухаючись уздовж мікротрубочок. Динеїн рухаеться по мікротрубочці від + до -, а кінезин від – да + кінця.
13. Які типи руху клітин забеспечують мікротрубочки?
Участь у переміщенні внутрішньоклітинних компонентів за рахунок збирання-розбирання (тредмілінгу) ті за рахунок транспорту по них «як по рейках». Є основними компонентами війок та джутиків які є органами руху в деяких найпростіших, у сперматозоїдів тощо.
14. Які типи руху клітин зумовлюють мікрофіламенти?
Участь у переміщенні внутрішньоклітинних компонентів за рахунок збирання-розбирання (тредмілінгу) ті за рахунок транспорту по них «як по рейках». Беруть участь в утворенні псевдоподій, за допомогою яких відбуваеться переміщення ряду клітин.
15. У клітині зруйновані мікрофіламенти і мікротрубочки. В результаті цього припинився процес виведення секрету. Чому?
Мікротрубочки і мікрофіламенти беруть участь в транспорті внутрішньоклітинних компонентів за рахунок збирання-розбирання (тредмілінгу) ті за рахунок транспорту по них «як по рейках». Таким чином якщо мікрофіламенти і мікротрубочки в клітинах зруйновані, то процес вивденення секрету з клітини зупиниться.
16. Які особливості будови кортикального шару цитоплазми?
В к.ш. цитоплазми мікрофіламенти ф-ть тривимірну сітку одразу під плазма лемою клітини. Ця актинова сітка бере участь у стабілізації ф-ми клітини. Актинові філамент в кортикальному шарі цитоплазми зв’язані з білком спектрином. Спектрин у свою чергу за допомогою анкірину пов'язаний з білком смуги 4.1 – з глікофорином.
17. Чим відрізняється кортикальна цитоплазма від внутрішніх ділянок цитоплазми.
Велика кількість мікрофіламентів розташована в кортикальному шарі цитоплазми. Тут мікрофіламенти формують трьохмірну сітку одразу під плазмолемою клітини (рис.5.4). Ця актинова сітка бере участь в стабілізації форми клітини. Наприклад, в еритроцитах форма двояковігнутого диска повністю забезпечується таким поверхневим цитоскелетом. Якщо цей поверхневий цитоскелет зруйнувати, то еритроцит набуває сферичної форми. Актинові мікрофіламенти в кортикальному шарі цитоплазми зв’язані з білком спектрином Спектрин, в свою чергу, за допомогою анкірину пов’язаний з білком смуги 3 (інтегральним білком плазмолеми) та за допомогою білка смуги 4.1 – з глікофорином (ще одним інтегральним білком плазмолеми)
18. Як впливає колхіцин на цитоскелет?
Процес зборки і розбирання мікротрубочок відбувається постійно. Це необхідно для постійної перебудови цитоскелету по мірі потреб клітини. Є речовини, які можуть заблокувати процес зборки або розборки мікротрубочок однією з них є колхіцин.
19. Як впливає концентрація йонів кальцію на цитоскелет?
Підвищена концентрація іонів кальцію в цитозолі викликає ушкодження цитоскелету і індукує утворення розривів мембрани. При високій концентрації іонів кальцію порушуються функції мітохондрій і це обумовлює загибель клітин.
20. Характер дії цитохалазинів на цитоскелет.
Цитозалазини — група споріднених по хімічній структурі метаболітів пліснявих грибів. Функціонально цитохалазини нагадують кепуючі білки. Вони зв’язуються зі швидко ростучим кінцем актинового філаменту і блокує як і приєднання, так і віл’єднання субодиниць на тому кінціЮ зоча блокування може бути неповним. Цитохалазини можуть так само і розрізати актинові філаменти. Найбільш активним є цитохалазин Д.
21. Будова центріолі.
Центріоль — невелика органела, що входить до складу клітинного центру, знаходиться в цитоплазмі біля ядра.Являє собою циліндр, стінки якого побудовані з дев'яти триплетів мікротрубочок, довжина 0,2—0,8 мкм. Структурним елементом мікротрубочок є білок тубулін. В клітинах зазвичай знаходяться дві центріолі, оточені центросомою. Центріоль характерна для усіх тваринних та деяких рослинних клітин.Функція центріолі полягає в утворенні веретена поділу під час розмноження клітин. Крім того вони беруть участь в утворенні війок та джгутиків.Центріоль мае циліндричну форму. Стінка цинтриолярного циліндру побудована з девяти триплетів мікротрубочок. Кожен триплет розміщений под. кутом 40 родо радіуса центріолі й складаеться з трьох мікротрубочок які позначаються літерами А(містить 13 протофібрил), В(прилягае до А, скл з 11 власних протофібрил і ще 2 протофібрили в неї спільні з А), С(прилягае до В, складаеться з 11 протофібрил і спільні з В). Від А мікротрубочки кожного триплету відходить по 2 вирости які назив ручками. Зовнішній виріст направлений до С-мікротрубочки сусіднього триплету. Внутрішній виріст направлений до центра центріолярного циліндра. Систему мікротрубочок центріолі описують ф-ю 9+3+0. Центральна частина центріолі на одному з кінців не містить ніяких структур, а ні іншому є центральна втулка зі спицями. Спиць 9, вони йдуть по одній від центральної втулки до кожного триплету.
22. Чи всі еукаріоти мають центріолі?
Центріолі беруть участь у формуванні цитоплазматичних мікротрубочок під час поділу клітини, і в регуляції утворення мітотичного веретена. У клітинах вищих рослин і більшості грибів центріолей немає, і мітотичний веретено утворюється там іншим способом.
23. Як змінюється будова та кількість центріолей протягом клітинного циклу.
Зміни у будові центріолі під час клітинного циклу На G0- та G1-стадіях інтерфази в клітині знаходиться дві центріолі: материнська та дочірня (див.рис.5.13). Таку пару центріолей називають диплосомою або клітинним центром. Ці дві центріолі розміщені під прямим кутом одна до одної. При цьому дочірня центріоля повернута до материнської центріолі своїм проксимальним кінцем. На материнській центріолі знаходяться сателіти, від яких відходять мікротрубочки. На дочірній центріолі сателітів та інших додаткових структур немає, вона є “голою”. На S-стадії інтерфази центріолі подвоюються. Для цього материнська й дочірня центріолі розходяться. Перпендикулярно до кожної з них закладаються нові центріолі. По закінченню S-фази і протягом всієї G2-фази в клітині присутні 4 центріолі, при цьому лише на одній з них (найстаршій) розміщені сателіти, інші три центріолі – “голі”. На початку мітозу сателіти з найстаршої центріолі зникають, мікротрубочки в цитоплазмі розбираються. Одна пара центріолей (диплосома) відходить до одного полюса клітини, а інша – до протилежного. Навколо материнської центріолі в кожній диплосомі утворюється фібрилярне гало, від якого формуються мікротрубочки веретена поділу. Дочірні центріолі в складі кожної диплосоми залишаються “голими”. Після цитотомії (поділу цитоплазми) в складі кожної з двох новоутворених клітин залишається по диплосомі По закінченні мітозу мікротрубочки веретена поділу розбираються, на материнській центріолі зникає фібрилярне гало і формуються сателіти. Від сателітів починається утворення мікротрубочок, що функціонуватимуть в інтерфазі. Настає новий G1-період.
24. Будова базального тільця.
Стінка базального тільця побудована з 9 триплетів мікотрубочок, у центральній частині базального тільця мікротрубочок немае. Через це систему мікротрубочок описують як 9х3+0 Аксонеми побудовані з 9 пар мікротрубочок – дуплетів. Кожен дуплет складаеться з А і В бікротрубочок. А мікротрубочки побудовані з 13 протофібрил, а в В мікротрубочка прилягае до А мікротрубочки й мае 11 власних протофібрил і ьпротофібрили спільні з А-мікротрубочкою. У центрі аксонами е ще одна пара мікротрубочок. Кожна з мікротрубочо побудована з 13 протофібрил. Таким чином систему мікротрубочок аксонами зображують у вигляді формули 9х2+2.
25-26. Структура і функції війок і джгутиків.
Війки та джгутики е органами руху в деяких найпростіших, у сперматозоїдів, за їхньою допомогою клітини слизової оболонки носа переміщують слиз разом з частинками пилу. В основі кожного джгутика чи війки міститься структура яка називаеться базальне тільце. Стінка базального тільця побудована з 9 триплетів мікротрубочок, яких у центральній частині немае. Часто систему мікротрубочок описують ф-ю 9+3+0. Д або В ззовні вкриті плазмо лемою, під якою знаходиться структура побудована з мікротрубочок. Її назив аксонемою яка побудована з 9 пар мікротрубочок – дуплетів. Кожен дуплет скл з А і В мікротрубочок. Систему мікротрубочок аксонемі в і д зображують у вигляді ф-ли 9х2+2
Дата добавления: 2015-10-23; просмотров: 1669 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Фрески Софії Київської. | | | Оборотные средства |