Читайте также:
|
|
Poisson lead−time | |||||
Variance | 60 80 | ||||
Fixed lead−time | |||||
Forecast horizon
Fig. 6.6. Lead-time demand variance for an ETS(A,N,N) model with fixed andstochastic lead-times. Here, α = 0.1, σ = 1 and _n = 2.
6.7 Exercises
Exercise 6.1. For the ETS(M,N,N) model, show that
θj = _ 2 n (1+ α 2 σ 2) j− 1
and
_ _
v + | = _ 2(1+ α 2 σ 2) h− 1(1+ σ 2) − 1.
n h n n
Exercise 6.2. For the ETS(A,A,A) model, use (6.23) replacing φj by j to showthat
_
vn + h|n = σ 21+ (h − 1)_ α 2+ αβh +16 β 2 h (2 h − 1)_
_
+ γhm { 2 α + γ + βm (hm + 1) }.
Exercise 6.3. Monthly US 10-year bonds data were forecast with anETS(A,Ad,N) model in Sect. 2.8.1 (p. 28). Find the 95% prediction intervals for this model algebraically and compare the results obtained by simulating 5,000 future sample paths using R.
Exercise 6.4. Quarterly UK passenger vehicle production data were forecastwith an ETS(A,N,A) model in Sect. 2.8.1 (p. 28). Find the 95% prediction intervals for this model algebraically and compare the results obtained by simulating 5,000 future sample paths using R.
Appendix: Derivations |
Appendix: Derivations
Derivation of Results for Class 1
The results for Class 1 models are obtained by first noting that all of the linear, homoscedastic ETS models can be written using the following linear state space model, introduced in Chap. 3:
yt = w_xt− 1+ ε t | (6.19) |
xt = F xt− 1+ gε t, | (6.20) |
where w_ is a row vector, g is a column vector, F is a matrix, and xt is the unobserved state vector at time t. In each case, {ε t } is NID(0, σ 2).
Let Ik denote the k × k identity matrix, and 0 k denote a zero vector of length k. Then
• The ETS(A,N,N) model has xt = _ t, w = F = 1 and g = α;
• The ETS(A,Ad,N) model has xt = (_t, bt) _, w_ = [1 φ ],
F = | φ | and | g = | α | ; | |||
φ | β |
• The ETS(A,N,A) model has xt = (_t, st, st− 1,..., st− ( m− 1)) _, w_ = [10 _m− 11],
0 _ | α | ||||||||||
m 1 | |||||||||||
F = | 0 m_− 1 | and g = | γ | ; | |||||||
0 m− 1 Im−− 1 | 0 m− 1 | 0 m− 1 |
• The ETS(A,Ad,A) model has xt = (_t, bt, st, st− 1,..., st− ( m− 1)) _, w_ = [1 φ 0 _m− 11],
φ | 0 _ | α | |||||||||||||||||||||
m 1 | |||||||||||||||||||||||
F = | φ | 00 m_ | −− 1 | and g = | β | . | |||||||||||||||||
I | m_ | − 1 | γ | ||||||||||||||||||||
m | − | m | − | m | − | 1 m | − | m | − | ||||||||||||||
The matrices for (A,A,N) and (A,A,A) are the same as for (A,Ad,N) and (A,Ad,A) respectively, but with φ = 1.
Forecast Mean
Let mn + h|n = E(xn + h | xn). Then mn|n = xn and
mn + h|n = F mn + h− 1 |n = F 2 mn + h− 2 |n = · · · = F h mn|n = F h xn.
96 6 Prediction Distributions and Intervals
Therefore
µn + h|n =E(yn + h |xn) = w_mn + h− 1 |n = w_F h− 1 xn.
Example 6.2: Forecast mean of the ETS(A,Ad,A) model
For the ETS(A,Ad,A) model, w_ = [1 φ 0 m_ | − 1 1] and | ||||||||||||||||||||||
φj | ... | ||||||||||||||||||||||
0 φj | ... | ||||||||||||||||||||||
F j = | d | + m | m | dj + m + | m... d | + | 2 m− 1, | m | |||||||||||||||
d | j | , | d | 1, | ... d | j | , | ||||||||||||||||
.. | j + m | 1, m | j + m, m | . | j +2 m | − | 2, m | ||||||||||||||||
. − | . | . . | . | ||||||||||||||||||||
.. | . | . | . | ||||||||||||||||||||
.. | . | . | . | ||||||||||||||||||||
dj +1, m | dj +2, m | ... dj + m, m | |||||||||||||||||||||
where φj = φ + φ 2 + · · · + φj, and dk , m = 1 if k = 0 (mod m) and d otherwise. Therefore,
w_F j = [1, φj +1, dj +1, m , dj +2, m ,..., dj + m , m ]
and
µn + h|n = _n + φh bn + sn−m + h + m.
k, m =0
(6.21)
The forecast means for the other models can be derived similarly, and are listed in Table 6.2
Дата добавления: 2015-10-24; просмотров: 191 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Example 6.1: ETS(M,N,M) model | | | Forecast Variance |