Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Lead−time demand variance

Читайте также:
  1. ANALYSIS OF COVARIANCE
  2. C. Economists are assuming that other influences on quantity demanded are constant so that the effect of price can be isolated.
  3. Demand-pull Inflation. Инфляция спроса
  4. Employment of Elderly: Supply or Demand?
  5. Example 11.2: Mean and variance for stationary processes
  6. Example 6.4: Forecast variance for the ETS(A,A,A) model 1 страница
  7. Example 6.4: Forecast variance for the ETS(A,A,A) model 2 страница

      Poisson lead−time    
         
           
Variance 60 80        
      Fixed lead−time    
           
           

 

Forecast horizon

 

Fig. 6.6. Lead-time demand variance for an ETS(A,N,N) model with fixed andstochastic lead-times. Here, α = 0.1, σ = 1 and _n = 2.

 

6.7 Exercises

 

Exercise 6.1. For the ETS(M,N,N) model, show that

 

θj = _ 2 n (1+ α 2 σ 2) j 1

and

_ _

v + | = _ 2(1+ α 2 σ 2) h− 1(1+ σ 2) 1.

n h n n

 

Exercise 6.2. For the ETS(A,A,A) model, use (6.23) replacing φj by j to showthat

_

vn + h|n = σ 21+ (h − 1)_ α 2+ αβh +16 β 2 h (2 h − 1)_

_

+ γhm { 2 α + γ + βm (hm + 1) }.

 

Exercise 6.3. Monthly US 10-year bonds data were forecast with anETS(A,Ad,N) model in Sect. 2.8.1 (p. 28). Find the 95% prediction intervals for this model algebraically and compare the results obtained by simulating 5,000 future sample paths using R.

 

Exercise 6.4. Quarterly UK passenger vehicle production data were forecastwith an ETS(A,N,A) model in Sect. 2.8.1 (p. 28). Find the 95% prediction intervals for this model algebraically and compare the results obtained by simulating 5,000 future sample paths using R.


Appendix: Derivations  

 

Appendix: Derivations

 

Derivation of Results for Class 1

 

The results for Class 1 models are obtained by first noting that all of the linear, homoscedastic ETS models can be written using the following linear state space model, introduced in Chap. 3:

 

yt = w_xt 1+ ε t (6.19)
xt = F xt 1+ t, (6.20)

where w_ is a row vector, g is a column vector, F is a matrix, and xt is the unobserved state vector at time t. In each case, t } is NID(0, σ 2).

 

Let Ik denote the k × k identity matrix, and 0 k denote a zero vector of length k. Then

• The ETS(A,N,N) model has xt = _ t, w = F = 1 and g = α;

• The ETS(A,Ad,N) model has xt = (_t, bt) _, w_ = [1 φ ],

F =   φ   and g = α ;  
  φ β  

• The ETS(A,N,A) model has xt = (_t, st, st 1,..., st ( m 1)) _, w_ = [10 _m 11],

      0 _         α      
    m 1          
F =   0 m_ 1   and g = γ ;  
    0 m 1 Im 1 0 m− 1       0 m− 1      

• The ETS(A,Ad,A) model has xt = (_t, bt, st, st 1,..., st ( m 1)) _, w_ = [1 φ 0 _m 11],

            φ   0 _                     α        
                    m 1                      
F =         φ   00 m_ 1       and g =   β   .  
                I m_ 1               γ        
      m   m   m 1 m         m      
                                             

The matrices for (A,A,N) and (A,A,A) are the same as for (A,Ad,N) and (A,Ad,A) respectively, but with φ = 1.

 

Forecast Mean

 

Let mn + h|n = E(xn + h | xn). Then mn|n = xn and

 

mn + h|n = F mn + h− 1 |n = F 2 mn + h− 2 |n = · · · = F h mn|n = F h xn.


96 6 Prediction Distributions and Intervals

 

Therefore

 

µn + h|n =E(yn + h |xn) = w_mn + h 1 |n = w_F h 1 xn.

 

Example 6.2: Forecast mean of the ETS(A,Ad,A) model


 

For the ETS(A,Ad,A) model, w_ = [1 φ 0 m_ 1 1] and              
      φj                 ...                  
  0 φj                 ...                
F j =       d + m   m dj + m +   m... d + 2 m− 1, m      
    d j ,   d   1,   ... d j     ,  
    ..   j + m 1, m   j + m, m .   j +2 m 2, m      
        .       .     . .     .          
    ..     .       .           .            
    ..     .       .             .            
                                               
          dj +1, m dj +2, m   ... dj + m, m        
                                               

where φj = φ + φ 2 + · · · + φj, and dk , m = 1 if k = 0 (mod m) and d otherwise. Therefore,

 

w_F j = [1, φj +1, dj +1, m , dj +2, m ,..., dj + m , m ]

 

and

µn + h|n = _n + φh bn + snm + h + m.


 

 

k, m =0

 

(6.21)


 

The forecast means for the other models can be derived similarly, and are listed in Table 6.2

 


Дата добавления: 2015-10-24; просмотров: 191 | Нарушение авторских прав


Читайте в этой же книге: UK passenger motor vehicle production Overseas visitors to Australia 3 страница | UK passenger motor vehicle production Overseas visitors to Australia 4 страница | UK passenger motor vehicle production Overseas visitors to Australia 5 страница | B) Local trend approximation 1 страница | B) Local trend approximation 2 страница | B) Local trend approximation 3 страница | B) Local trend approximation 4 страница | Parsimonious Seasonal Model | Quarterly sales distribution: 16 steps ahead | Lead time demand distribution: 3−steps ahead |
<== предыдущая страница | следующая страница ==>
Example 6.1: ETS(M,N,M) model| Forecast Variance

mybiblioteka.su - 2015-2025 год. (0.012 сек.)