Читайте также:
|
|
Работа конденсационной установки турбины прежде всего характеризуется величиной полученного вакуума. Вакуум в конденсаторе оказывает большое влияние на экономичность конденсационной паровой турбины. По данным тепловых испытаний СОЮЗТЕХЭНЕРГО паровой турбины К-1000-60/1500-1 Калининской АЭС: изменение давления отработавшего пара на 0.01 кгс/см2 соответствует изменению мощности турбины на 11250 кВт. Поэтому одной из главных задач эксплуатационного персонала является поддержание вакуума в конденсаторе в установленных заранее пределах.
Зададимся вопросом, каким должно быть давление отработавшего пара в конденсаторе?
Первоначально отметим тот факт, что давлению влажного пара соответствует вполне определенная его температура - температура насыщения. Получающийся над водой пар называется насыщенным паром. Определенной температуре насыщенного пара всегда соответствует определенное давление, и наоборот, определенному давлению всегда соответствует строго определенная температура.
Очевидно, что температура пара, покидающего турбину и работающего в замкнутом термодинамическом цикле, не может быть ниже температуры охлаждающей среды, которой обычно является вода. Охлаждающая вода является естественным холодильником, необходимым для создания замкнутого цикла согласно второму закону термодинамики.
![]() | ![]() |
Свойства водяного пара свидетельствуют, что насыщенный пар с температурой, близкой к температуре окружающей среды, имеет давление ниже атмосферного, т.е. заполненное паром пространство в конденсаторе должно находиться под давлением ниже атмосферного (иначе говорят: под разрежением - вакуумом).
Т.о., температура конденсации отработавшего в турбине пара определится как сумма:
а) температуры охлаждающей воды на входе в конденсатор;
б) нагрева охлаждающей воды в конденсаторных трубках;
в) температурного напора на выходе из конденсатора.
Рассмотрим подробнее, от каких факторов зависят нагрев охлаждающей воды и температурный напор в конденсаторе. Нагрев охлаждающей воды зависит от расхода пара в конденсатор и расхода охлаждающей воды через него. Он определяется из уравнения теплового баланса конденсатора, которое, если пренебречь вносимой с дренажами ПНД теплотой, имеет вид:
Кратность охлаждения, представляющая собой удельный расход охлаждающей воды (на 1 кг конденсирующегося пара) является важной характеристикой конденсатора. Расчетная кратность охлаждения выбирается на основании технико-экономических расчетов и обычно находится в диапазоне:
одноходовые конденсаторы - 75¸120,
двухходовые конденсаторы - 50¸65,
трех- и четырехходовые - 30¸40.
Чем больше кратность охлаждения (расход охлаждающей воды), тем меньше нагрев воды в конденсаторе и глубже вакуум и наоборот.
При загрязнении внутренней поверхности трубок конденсатора гидравлическое сопротивление конденсатора растет, расход охлаждающей воды уменьшается, а нагрев ее увеличивается.
Расчетный нагрев воды обычно выбирают на стадии проектирования.
Температурный напор - это разность между температурой насыщения пара в конденсаторе и температурой охлаждающей воды на выходе из него. Температурный напор в основном зависит от величины теплообменной поверхности конденсатора и коэффициента теплопередачи в нем, а также от расхода охлаждающей воды и ее нагрева. Чем выше коэффициент теплопередачи, тем меньше температурный напор и глубже вакуум.
Температурный напор определяется по следующему выражению:
![]() | , °С, |
где | ![]() | . |
Здесь
k - коэффициент теплопередачи в конденсаторе, Вт/(м2/град);
F - поверхность охлаждения конденсаторов, м2;
С в - удельная теплоемкость воды, Дж/(кг град);
W - расход охлаждающей воды, кг/с;
∆ t в - нагрев воды в конденсаторе,°С.
Во время работы турбины на величину температурного напора влияет ряд эксплуатационных факторов:
· расход охлаждающей воды через конденсатор;
· степень загрязненности трубной системы конденсатора;
· паровая нагрузка конденсатора;
· воздушная плотность конденсатора и др.
Расчетная величина температурного напора определяется из технико-экономических расчетов и обычно составляет 3-7°С. Очевидно, что при увеличении расхода охлаждающей воды растут скорость воды в трубках, коэффициент теплоотдачи от стенки к воде, а температурный напор уменьшается.
При загрязнении трубной системы конденсатора растет термическое сопротивление стенки, и температурный напор возрастает.
При снижении паровой нагрузки конденсатора коэффициент теплопередачи уменьшается, однако нагрев воды (при постоянном ее расходе) уменьшается в большей степени, и температурный напор тоже уменьшается.
При ухудшении воздушной плотности конденсатора содержание воздуха в паре увеличивается. При этом коэффициент теплоотдачи от пара к стенке уменьшается, и температурный напор, соответственно, растет.
Таким образом, вакуум будет тем глубже, чем /ниже температура охлаждающей воды, больше ее расход (кратность охлаждения) и чем больше теплообменная поверхность конденсатора и коэффициент теплопередачи в нем.
Расчеты показывают, что при среднегодовой температуре охлаждающей воды на входе в конденсатор 10...15°С экономически целесообразно давление в конденсаторе:
p к = 0.03... 0.04 ата, а при температуре 20...25°С - p к = 0.05... 0.07 ата.
Дата добавления: 2015-07-08; просмотров: 533 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Состав конденсационной установки | | | Предельный и экономический вакуум |