Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Математический маятник

Читайте также:
  1. Амбивалентность маятника: эго неэффективно, когда соперничающие богини борются за господство
  2. Лабораторная работа № 5. Математический пакет MathCAD
  3. не изменился 2) увеличился 3) уменьшился 4) ответ зависит от длины нити маятника
  4. Оборотный маятник
  5. Определение момента инерции физического маятника
  6. Определение скорости полета «снаряда» методом крутильного баллистического маятника.

Обнинский Институт Атомной Энергетики.

ФИЗИКО-ЭНЕРГЕТИЧЕСКИЙ ФАКУЛЬТЕТ.

 

 

 
 

 

 


Тема: Изучение движения физического резонанса.

 

 
 

 


Выполнил: Егоров А.С.

Преподаватель: Савельев Н.П.

 

 

Обнинск 2001 год

Введение

Физическим маятником называется твердое тело, находящееся в поле сил тяготения и имеющего ось вращения, лежащую в плоскости, перпендикулярной вектору ускорения свободного падения g.

 
 


o

 
 


r

       
 
   
 


 
 

o

mg

Известно, что движение твердого тела, имеющего неподвижную ось вращения, описывается уравнением

, (1)

где - момент инерции относительно оси вращения; - угловая скорость вращения; - суммарный момент действующих на тело внешних сил.

Для физического маятника уравнение (1) преобразуется к виду

. (2)

Уравнение (2) описывает идеализированный случай движения, поскольку не учитывает силы трения. Здесь -момент силы тяжести; - угол отклонения центра масс тела, отсчитываемый от вертикальной оси (положения равновесия); - масса тела; - расстояние от точки закрепления О до центра масс С.

Умножим обе части (2) на :

и преобразуем полученное выражение к виду

. (3)

Интегрирование этого соотношения приводит к уравнению

(4)

Постоянная интегрирования С может быть найдена из начальных условий(соотношениё для положения равновесия):

, ,

где угловая скорость маятника при прохождении положения равновесия,

Тогда (4) имеет вид

(5)

Это- уравнение колебания физического маятника.

Для дальнейшего изучения характера движения удобно это уравнение представить в виде

(6)

Знаки "+" или "-" соответствуют движению маятника вправо или влево от положения равновесия.

Характер движения маятника существенно зависит от величины параметра .Действительно, если кинетическая энергия тела при прохождении положения устойчивого равновесия больше, чем работа, необходимая для поднятия центра тяжести маятника от самого низкого положения (положения устойчивого равновесия) до самого высокого(положения не устойчивого равновесия),

,

то подкоренное выражение в правой части (6) всегда положительно и угол с течением времени может неограниченно увеличиваться.Другими словами, если , то маятник соверщает вращательное движение вокруг своей оси подвеса с переменной угловой скоростью (кривая 1 на рис. 2).

Если , то , и движение маятника изображается кривой 2 на рис. 2.

Если , то подкоренное выражение положительно при , где . (7)

Во время движения угол возрастает до , затем убывает до , т.е. происходят колебания физического маятника. 1

j

 
 


p

jmax

 

 


-jmax

Для малых значений , таких что , уравнение (2) преобразуется к виду (8)

Это уравнение гармонических колебаний, где - собственная частота колебаний .

Его решение имеет вид

,

здесь A,a - амплитуда и начальная фаза колебаний, которые могут быть найдены из начальных условий.Вид такого движения показан на рис. 2 кривой 3.

Все время движения физического маятника в общем случае связанно с углом поворота соотношением

 

, (10)

полученным из (6).Если в это соотношение подставить пределы интегрирования и , также что , то получим формулу для периода колебательного движения:

. (11)

Интеграл, стоящий в правой части (11), не может быть выражен через элементарные функции. Однако для малых значений угла можно с помощью разложения в ряд и замены на получить в первом приближении для периода гармонических колебаний формулу

. (12)

Математический маятник

Математическим маятником называется идеализированная система, состоящая из невесомой и не растяжимой нити, на которой подвешена масса, сосредоточенная в одной точке. В приближении малых значений углов отклонения уравнение колебаний математического маятника будет иметь вид (8).С учетом того, что момент инерции

, (13)

где масса материальной точки, расстояние до точки подвеса, собственная частота колебаний

(14)

Период колебаний математического маятника

. (15)

Эта формула используется для определения ускорения свободного падения.


Дата добавления: 2015-07-08; просмотров: 107 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Первый груз| Оборотный маятник

mybiblioteka.su - 2015-2025 год. (0.011 сек.)