Читайте также: |
|
ТЕОРЕТИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ
по дисциплине
ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ
Раздел №18
«Изготовление деталей и полуфабрикатов из композиционных
материалов»
Направление подготовки:
Специальность:
Формы обучения очная
Тула 2011 г.
РАЗДЕЛ 18. ИЗГОТОВЛЕНИЕ ДЕТАЛЕЙ И ПОЛУФАБРИКАТОВ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ
План:
18.1. Общие сведения.
18.2. Классификация КМ.
18.3. Требования, предъявляемые к волокнам.
18.4. Армирующие материалы.
18.5. Матричные материалы.
18.6. Способы получения МКМ.
18.7. Керамические КМ.
18.8. Полимерные КМ.
18.9. Биметаллические материалы.
18.10. Основные способы производства биметаллов.
18.11. Сущность и особенности эвтектических композиционных материалов
18.12. Эвтектические композиционные материалы на алюминиевой основе.
18.13. Эвтектические композиционные материалы на основе никеля.
18.14. Способы получения полуфабрикатов и готовых изделий.
Общие сведения
Человечество еще на заре своего существования применяло принцип композиционных материалов (КМ) в своих целях. Сооружая жилища, наши предки в глину для кирпичей добавляли солому и получали типичный армированный материал повышенной прочности.
Первым примером научного подхода к созданию искусственных КМ можно считать появление железобетона и стеклопластиков. Как известно, бетон сопротивляется сжатию и очень плохо выдерживает растягивающие нагрузки. Композиция из бетона и стальной арматуры, обладающая высокой прочностью на растяжение, объединяет в одном материале положительные свойства обоих компонентов. Железобетон можно отнести к числу первых образцов армированной керамики.
В 50-х годах XX в, обнаружили, что многие материалы в виде тонких монокристаллов игольчатой формы обладают фантастически высокой прочностью /10000 мн/м2 и более/. Были получены новые виды неорганических поликристаллических волокон - углеродные, борные с прочностью 3000-3500 мн/м2. Возникла идея использовать все эти сверхпрочные волокнистые материалы для армирования различных матриц, и в первую очередь металлов.
Разработаны теоретические основы упрочнения металлов волокнами, созданы композиции на алюминиевой, титановой, никелевой и др. основах, обладающих значительно большей прочностью, чем стандартные промышленные материалы на соответствующей основе. Сейчас разработаны "микроармированные" керамические материалы на основе различных оксидов, карбидов, боридов, нитридов и др., диаметр которых составляет доли мм или даже микрометры. За счет такого армирования удалось получить высокотемпературные керамические материалы с высоким сопротивлением термическим и динамическим нагрузкам.
При создании сверхзвуковых самолётов, ракет, космической аппаратуры и др., где вопросы стоимости отступают на второй план, а первостепенную роль играет надёжность конструкции и её масса, применяют металлические композиции типа алюминий-графит, алюминий-бор и др.
Разработаны теоретические основы упрочнения металлов волокнами, созданы композиции на алюминиевой, титановой, никелевой и других основах, обладающие значительно большей прочностью, чем стандартные промышленные материалы на соответствующей основе.
Особое место среди КМ занимают армированные КМ, в которых матрица упрочнена элементами нитевидной формы. Именно в таких материалах возможно широкое варьирование свойств, усиление КМ в наиболее нагруженных направлениях, приспособление его к требованиям конструкции. Применение КМ в таких случаях весьма эффективно, поскольку сам материал можно получить с заранее заданными в соответствующих направлениях свойствами.
Наряду с несомненными преимуществами по сравнению с традиционными материалами у армированных КМ есть недостатки, в частности, многим из них присуща низкая прочность при сдвиговых нагрузках, некоторые КМ плохо сопротивляются сжатию. Эти недостатки следует учитывать и компенсировать рациональным проектированием изделий.
Дата добавления: 2015-07-07; просмотров: 152 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Композиционные материалы с неметаллической матрицей | | | Классификация KM |