Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

II и III.

21●[2; 3]

21●[0; 1) | √2–√x>1 |

21●[0; 1] |х² ∫ х 1dt≤0

21●–π/2+2πn n*Z

21●–π/2+2πn,кεz

21●(π/3+2πn; 5π/6+2πn),(–π/3+2πn; π/6+2πn),n*Z

| x–y=–π/2 cosx+siny=1 |

21●–π/4+πn n*Z

21●5π/2+2πк,к*z

21●1/x(x2+1)3

21●(x+1)2ex |у=(х²+1)ех|

21●(x²+2x+1)e

21●(x+y)/(x–y) | (x/y–y/x)•(x/y+y/x–2)–1|

21●x²-x+C

21●π/2+πn, n+2πn, n*Z

21●π/2+πn, π+2πn, n*Z |sin²x=cosx+1|

21●0

21●(–1;–1/3) |2х+1|<|x|

21●1. |sin2α,если tgα=1|

21●0. |sin2α, если cosα=1|

21●1. |√х²+х–1=√х|

21●1 |sin²α/1+cosα+cosα|

21●1–cosx |sin²x/1+cosx=?|

21●1. {2–|x–1|

21●–π/2+kπ<2x<π/4+kπ,k*Z или

–π/4+kπ<x<π/8+kπ,k*Z |tg2x<1|

21●20км/ч

21●48,40

21●2/2x+1 f(x)=ln(2x+1)

21●1/√(x²+1)³ |y(x)=x/√x²+1, y(x).|

21●π/8+ πк/2; k*Z

21●π/2+πk; k*Z {cos2x=–1

21●3 |C=(a–b)•(a+b) скаляр произ|

K kEZ

21●5π+2πk |tg(x/2–π)=1|

21●2π

21●2πк<x<π/6+2πк,k*Z; 5π/6+2πк<х<π +2πк,n*Z

|sinx+cos2x>1|

21●I и III |f(x)=2x–1коорд четв леж граф|

Нет решений

21●нет решений { |2х+1|=х

21●–π/3+2πn≤x≤π/3+2πn,n*Z |y=√2cosx–1|

21●2 |2 ∫ 1 dx|

21●a6=7 (6 член прогр)

21●π/4+πk,k*Z (sin2x=1)

21●π/4+kπ | tg(2π–x)=–1 |

21●–π/4+πn≤x≤π/4+πn,n*Z |y=√cos2x/1+sinx|

21●–π/4+πn,n*Z |2sinx+cosx=1|

21●(x+1)²ex y=(x²+1)ex.

21●√x²–1+C

21●(0; 1)

21●(–1)n+1π/6+πn; n*Z |2sinx=–1|

21●(–1)k+1π/6+πk k*Z |2sinx=–1|

21●π/2+πk;k*Z |cos2x=–1|

21●(–1;5) |√х²–х+1=х|

21●–1;1

21●±π/3+2πn,n*Z |2–tgx=cos/1+sinx|

21●320

21●(–∞; 1) (2x<|x|+1)

21●(–∞;–1)U(1; ∞)

21●(–∞;–1)E(1;∞) |y=lg(x²–1)|

21●[0; +∞) | у=√log2(x+1) |

21●[1;+∞) |у=2√х–1|

21●[1/2; 1)U(1;+∞)

21●±π/3+2πn, n*Z

21●1 |√х2+х-1=√х|

21●1 |sin²α/1+cosα+cosα|

21●±π/4+2πn,n*Z |√2cosx=1|

21●1/√(х2+1)3

21●2, 5, 10, 17 |xn=n²+1|

Х-1

21●(–∞; 0] |у=2lnx–ax–1|

21●2π 2 arccos(–1)

21●2πk<x<π/6+2πk,k*Z; 5π/6+2πk<x<π+2πk,k*Z

|sinx+cos2x>1|

21●3, 5, 7, 9, 11 |xn=2n+1|

21●3/2; 4/3;5/4;6/5;7/6; |an=n+2/n+1|

21●D(q)=R E(q)=R

21●g(x)=x–1/2

21●жyп та емес, таk та емес, периодсыз |f=х2+х+1|

21●π/2+πn, π+2πn,n*Z |sin²x=cosx+1|

21●–π/3+2πn≤x≤π/3+2πn,n*Z |y=√2cosx–1|

21●–π/4+πn,nЭZ {2sinx+cosx=1

21●πk≤x≤π/4+πk |cos²x≥1–sinx•cosx|

21●х |х²–х/х–1|

21●х=1

21●{4} |√x–2/√x=1 |

21●х=кπ,кεz

21●x=π/2+πk;π+2kπ,k,k*Z |sin²x=cos x+1|

21●0;-2

21●нет решений {|2х+1|=х

21●(π/3+2πn, 5π/6+2πn);(–π/3+2πn; π/6+2πn),n*Z

21●–8е–2х |f(x)=√2x–1|

21●1/e (y=x²•x–x, x=1)

21●a–b

21●kπ |tgx+cos2x=1|

21●πk,k*Z |(sinx+cosx)²=1+sinx•cosx|

21●x*(–π/2+πn; π/4+πn],n*Z |tg(2π+x)≤1|

21●3 және 5 |f(x)=x²+x+1 1)жұп 2)так 3)жұпта емес тақта емес 4)периодты 5)периодсыз|

Порттан бір мезгілде екі катер шығып, біріЖ:21

210●–1/2 f(x)=x+ln(2x–1)

210●(-1)n+1 π/n+πn,n*Z |√2sinx+1=0|

N

210●(-1)n π/6+πn,n*Z |2sinх–1=0|

210●(2;+∞) |√х²+х–10=х|

210●[–π/3+2πk;π/3+2πk], k*z

210●–π/4+πn/2<x<π/8+πn/2,n*Z |tg2x–1<0|

210●π/6

210●±π/4+2πn.n*z |√2cosx–1=0|

210●(1;2)U(2;+∞)

210●±π/3+2πn n*Z |2cosx–1=0|

См, 4см, 4 см.

210●x=(–1)k π/6+πk,k*Z | log2(sinx)+1=0 |

Cm

210●π

210●π. f(x)=arcos(2x-1).Найдите f(0)

K

210●–π/3+2πn≤x≤π/3+2πn,n*Z |2cosx–1≥0|

210●–π/4+πn/2<x<π/8+πn/2,n*Z |tg2x–1<0|

210●π/4+π/2k, k*Z |ctg²x–1=0.|

210●60; 75км/ч

210●14+k/2k k*Z

210●[0; 1] | x² ∫ x 1 dt≤0|

210●m=2, m=–1

2100●[0; 1] |х² ∫ х 10dt≤0|

21000●0;±50.

21001●4/3

210013●3π+π/2

2100180●45°

210021212100212100210021●–1

2101●0 |x²–1=lg0,1|

2101●10 |x²=10lgx+1|

2101105●yнаиб=–11;yнаим=–36

2101105●а)–11; б)–36

21012●11 13/15π |y=x²+1, y=0, x=1, x=2|

21012●1 1/3

21014●144π см²

См (длин обр усечен конуса)

21015●60 км/час, 75 км/час.

210150180●30

2102●4π

2102●0;–2 |у(х)=(х–2)√х+1 [0; 2] |

21020●20 2/3π

21021025●–2/x–5

21021710●4√10 см. (диаг парал–да)

210232●(0; 1; 1,3)

2102323210●610

210235234●[–2; 3]

21024●16

210242046●n=10, q=2.

Г (Найдите массу серебра в сплаве)

2102501●(–3; 2)

2102552●1

2102710●(–∞;+∞)

21028●(4;2)

21028160●(2;0),(8;0)

Kатар.

210300●30

2103103●±1

21032●шешуі жоқ

210356●–6

21042●y=2

210420210●1a²

2104523●12

2104922●3

2105●F(x)=(2x–1)√2x–1/3+C

210513●[–3/8; 2/3]

21053105410531051052310543●–1

210570495●√3/4

U(1;3)

Мин

21073●4 |S(t)=–t²+10t–7,t=3|

21079●(2; 5)

Проц содер уксусной кислоты)

2109341234171167515●6.

211●y=√x+1

211●0.

211●(3;+∞)

211●1/(x+1)2

211●5,5

211●нулей функции нет |у=х²+1/х+1|

211●3x²–2x+1

211●π/3(ln+9) π/1(3k+9)

211●bx–1

211●2x+1 (f(x)=log2(x–1), f–1(x))

2110●3/2+ln2 |2 ∫ 1 (1/х+х) dx, где x≠0|

2110●–3<m<1 x2–(m+1)x+1=0

См

21100●28/15π (Объем тела у=х²+1, х=1, х=0, у=0)

211002●150см² (площ трапеци)

21102●204(x²–1)101 |f(x)=(x²–1)102|

21102132312●30

211091●c→=a→+7b→

2111●(an+1+1)(an-1)

2111●–1/3

2111●(–1; 1)

2111●х<–1:х>1:

2111●x•ln–1–x/1+x+1 | y=(x²–1)ln√1–x/1+x |

2111●0,5.

21111●sin2α

2111012●4

Скалярное произвед)

21111●sin2α {sin²α(1+sin-1α+ctgα)(1–sin-1α+ctgα)

Х

2111111●3–x³

211112●х4–121

211120●320

2111210●(–1;2)

21112182225●–2

21112194●–2

Х.

2111413216●3.

2111510119●(2;1)

2111524890●40км/ч;50км/ч

2111825●Унайб=0; Унайм=–12.

2112●–1/2 |(sinα–cosα)–1, при α=π/12|

2112●1/√2•√1–x/(1–x)²–1/2cos 1–x/2

21121●3x²+2x+2–2/x²–2/x³

211212●[0;1/2]

211212012●[0; 1/2]

211212●1

211212●–1/2(2x+1)+5/6

21122●–4 1/3

2112200●0

21121●3x²+2x+2–2/x²–2/x³

2112●–1/2 (sinα-cosα)²-1, α=π/12

2112●–1 {sin²α–1/1–cos²α, α=π/4

2112●1/√2•√1–х/(1–х)²–1/2cos1–x/2

2112●y=x+1; y=1/3x+1–2/3

21120●(–∞;–1]

21121●3x²+2x+2–2/x²–2/x³

211211●2x/x+1

211212●[0; 1/2]

21122●–4 1/3 |2 ∫ 1(1–2x–x²)dx|

2112221●a)4;3 б)(–∞; 3,5] в)[3,5; +∞)

21123●–3±√6/2: 9

211231●2,5

21123121●2,5

2112313112●–1/7

2112320●1

21124●–1 |sin²α–1/1–cos²α, α=π/4|

21124●–3±√5/2; 1

21125●10

2112845●Унайб=0; Унайм=–2

2113●–3;1

2113●(1; 4) {2х+1/1–х<–3

21130●5:6

U(1;3)

Км

21132●√26

211324●5,12%

2113524●5,12%

21137112●1

Cm.

См (Опр периметр ромба)

2114●[1;2] f(x)=√2-x+(x-1)1/4

21140●6π

2114059●6π

211419222●3,4,5

2114238●5

211426●(–6;–2]U[–0,5; 6)

Кг

Нет корней

Нет корней

Ordm;.

2115●(-1)к π/12+πк/2, k*Z

2116●[-7;9]

211732●arcos(–8/√145)

211815●0

2118312●13 1/3

211965●6

212●0 |log√2a=log1/√2b log(ab)=?|

212●0,5 |sinα+cosα)²/1+sin2α|

212●(х–3)(х+4)

212●х–у

212●2/ln2+e2–e | 2 ∫ 1(ex+2x)dx|

212●(2π/3+2πk;4π/3+2πк),k*Z |–cosx>1/2|

212●π

212●30,20

212●(x–3)(x+4).

E

212●2x+2–1 log2(x+1)–2

212●2/cos²x+1/√2sin²x | y(x)=2tgx–1/√2 |

212●2cos²α |cos²α+(1–sin²α)|

212●tg²α |sin²α/1–sin²|

212●ctg² α |cos²α/1–cos²α|

212●–3/4 |sinα+cosα=1/2|

212●–3/5 |cos(2arcctg ½)|

212●(–7π/12+πk;π/6+2πk)

212●(–7π/12+πk; π/12+πk),k*Z |sin2x<1/2|

212●(π/6+2πk; 5π/6+2πк) |cos(π/2–x)>1/2|

212●1

212●–√2;√2

212●[4; ∞)

212●2 | sinα+cosα)²+1–2sinα. |

212●π+2πn, (-1)nπ/6+πn,nεz

212●–4;3

212●(1/2; 8)

212●(12; +∞)

212●(–∞; +∞) |у=cos 2x/1+x²|

212●5 √2x–1=x–2

212●(–1)n π/12+π/2n, n*Z |2sinx cosx=1/2|

212●5/6

212●5/6 |2 ∫ 1 (x²–x)dx|

212●π/3+4πn≤x≤5π/3+4πn,n*Z |sin x/2≥1/2|

212●3 |2 ∫ –1 x² dx|

212●3 log(2x+1)=2

212●π/2+2πn,n*Z (–1)k+1 π/6+πk,k*Z

|sin2x/1+sinx=–2cosx.|

212●II,I–a,IV у=sin(2x+1)–2, y=sinx

2120●π+2πn,n*Z {cos²x+1+2cosx=0

2120●6•1/5 π {y=x²,x=1,x=2,y=0

2120●(–1;1).

2120●[2;∞) (√х–2•(х+1)/2х≥0)

212003912023100772526●0

212005●у=24х+16

21202●35

212022●(-4;3)

212044135●–6

21205●у=24х+16

212050●(0; 1)

X

21206●–3/4 |sin2α, sinα+cosα=1/2, 0<α<π/6|

2121●1

N

2121●1/sin²α

2121●tg α/2 |cos2α/1+cos2α•cosα/1+cosα|

2121●–4/(2x–1)² |f(x)=2x+1/2x–1|

2121●u=√2x–1 | ∫e√2x–1/√2x–1 dx|

21210●(–1)n π/6+πn; n*z

21210●1/2<m<1 или m>5

21210●{1;1/2}

212113122●{1/2,1}

21212●0 |sin²x/1+cosx–cos²x/1+sinx+cos2x/sinx+cosx|

21212●√c+√d/√c–√d

21212●πс+πd/πc–πd

21212●(-1)к+1π/12+π/2к,кεz

21212●–8/25.

212121●1/2е2x–1+x³/3+11/24.

21221227132●12+√21

212121122●1/a+b

2121212●(x²–x–1)(y–z–10)

2121212121211●2m²/m²+1

21212121211●2m²/m²+1

212122454414●4

2121212414341●3/4

212122454434●8

212125●{–1} |х²+1/х+х/х²+1=–2,5|

212129●1/2; 2

21212931472●1/2

212129872●1/2.

21213●7

212132●1.

212132●1;1

2121327●–1<х<2

2121327●–1 | 21+log2(x+1)>x•log327 |

21214129872●1/2

212141813●21/220

21215●(-∞;0)U(1;+∞)

2121533425●3,5

212181●0<х≤√2·;х>8

2122●=a+b/ a-b

2122●0

2122●16

2122●25/4 {(2 ½)²

212201●y=2x-3

2122200●0.

212220●x=2π(1+2k),k*Z

21222033●3π/4

21221●(1,6; 0,8)

21221●1/2e 2x–1+x³/3+11/24

21221●2(x+1)/(1–x)³

21221111●1–a/√a

212212●12+√84

212212●–1;0

Tg1.

21221227132●12+√84.

21221227152●14+√140.


Дата добавления: 2015-07-07; просмотров: 175 | Нарушение авторских прав


Читайте в этой же книге: Sup2; (Цил буир бетинин ауданы) | Найдите радиус сферы, касающ оси конуса, его основания и боковой поверхности) | М (Огор. Учас) | Найдите прогр) | Нет корней | Sin2a-cos2a | S прямоугол) | Дет,40дет | См, 5см | Ен улкен бурышын таб) |
<== предыдущая страница | следующая страница ==>
Сум всех двухзначн чисел)| Нет решения

mybiblioteka.su - 2015-2024 год. (0.044 сек.)