Читайте также:
|
|
Для расчета и анализа цепей с несколькими источниками используются различные методы, некоторые из которых будут рассмотрены далее. В том случае, когда в разветвленной электрической цепи с несколькими источниками имеется группа активных или пассивных элементов, соединенных последовательно или параллельно, следует для упрощения расчета и анализа заменить их соответственно одним эквивалентным пассивным пли одним активным элементом. Иногда может показаться целесообразным использовать преобразование треугольника резистивных элементов в звезду.
Метод контурных токов. Метод контурных токов дает возможность упростить расчет электрических цепей по сравнению с методом законов Кирхгофа за счет уменьшения числа уравнений, которые приходится решать совместно.
Дадим обоснование указанного метода.
Любая разветвленная электрическая цепь состоит из нескольких смежных контуров. Например, в электрической цепи ряс, 1.14 таких контуров три: абвга, бдвб и аедба. Каждый контур имеет несмежные ветви, принадлежащие лишь данному контуру, и смежные ветви, принадлежащие также соседним контурам. Так, контур абвга имеет несмежную ветвь вга и две смежные ветви аб и бв.
Допустим, что в каждом контуре рис. 1.14 имеется некоторый контурный ток, одинаковый для всех элементов контура. На ряс. 1,14 контурные токи обозначены II, III и IIII. Положительные направления контурных токов могут быть выбраны произвольно. Наложим на контурные токи следующее условие: контурные токи должны быть равны по абсолютному значению токам несмежных ветвей соответствующих контуров.
Если удастся найти контурные токи, то через них легко определять и токи всех ветвей. В силу наложенного условия токи несмежных ветвей следует определять так: если выбрать положительное направление тока несмежной ветвисовпадающим с контурным током, то ток ветви должен быть равен контурному току; если же направить ток несмежной ветви против контурного тока, то он должен быть равен контурному току со знаком «-». Так, токи в несмежных ветвях цепи (рис. 1.14) будут равны
I1 = II, I3 = - III, I6 = - IIII.
Чтобы выяснить, как определять токи смежных ветвей, выразим ток I2 через токи I1 и I3 и заменим последние контурными токами: I2 = I1 + I3 = II — III. Аналогично найдем
I4 = II - IIII, I5 = IIII - III
Как видно, со знаком «+» должен быть взят тот контурный ток, направление которого совпадает с направлением тока смежной ветви; контурный ток, направленный в противоположную сторону, должен быть взят со знаком «-».
Нетрудно доказать, что контурные токи могут быть определены путем совместного решения системы уравнений, составленных по второму закону Кирхгофа, в которые вместо падений напряжения от токов ветвей следует ввести падения напряжения от контурных токов с соответствующими знаками.
Уравнение по второму закону Кирхгофа при включении внего контурных токов в общем случае имеет вид
ΣE = ΣIk r + ΣUk.
Для рассматриваемой цепи (рис. 1.14) уравнения будут:
Е2 = - I1r02 + III(r02 + r3 + r5) - IIIIr5 + U;
Е1 - Е2 - I1(r01 + r02 + r4) - III r02 - IIIIr4;
0 = IIII (r4 + r5+ r6)- IIr4 - IIIr5.
При решении задач рассмотренным методом целесообразно выбирать положительные направления токов ветвей после определения контурных токов. В этом случае можно выбрать положительные направления токов ветвей так, чтобы все они совпадали с их действительными направлениями.
Дата добавления: 2015-11-04; просмотров: 64 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Собственная электронная и дырочная электропроводность | | | Общие сведения о биполярных транзисторах |