Читайте также: |
|
В гетероструктурах с модулируемым легированием GaAs/AlGaAs средняя длина свободного пробега электронов в двухмерном электронном газе может превышать 10 мкм при низких температурах. Это позволяет создавать по существующей микроэлектронной технологии приборы, в которых электроны распространяются баллистически между стоком и истоком, кроме случайных столкновений с границами раздела. Соответствующий электрический ток может отражаться, следуя траекториям отдельных электронов, таким же путем, как и световые лучи, то есть по законам геометрической оптики. Аналогия с геометрической оптикой была использована для того, чтобы конструировать линзы и призмы с полевым эффектом, которые могут изменять траектории баллистических электронов. Изменяя отражение границ раздела с помощью внешнего смещения, можно контролировать ток, текущий между парой контактов, что позволяет строить полевые транзисторы на отраженных электронах. Линзы и призмы могут быть сделаны из металлических затворов, которые изменяют плотность основного двумерного электронного газа, обеспечивая отражение на границе раздела между управляемой и неуправляемой областями.
На границе раздела между управляемой (под затвором) и неуправляемой областями двухмерного электронного газа концентрация электронов изменяется приблизительно ступенчато благодаря изгибу края зоны проводимости (рис.1.11).
Рис.1.11. Граница раздела между управляемой и неуправляемой областями двухмерного электронного газа (а) и оптическая аналогия преломления лучей (б).
Сила, связанная с искривлением зоны, действует перпендикулярно границе раздела, и поэтому момент электрона в направлении, параллельном границе раздела, сохраняется, то есть p1sinΘ1 = p2sinΘ2. С другой стороны, момент электрона в двухмерном электронном газе задается величиной ћkF и, так как kF= (2πn)1/2, где п - концентрация электронов, получаем:
sinΘ1 / sinΘ2 = (n2/n1)1/2.
Это выражение аналогично закону преломления оптических лучей.
Идея использования преломления траектории электронов для переключения тока между различными контактами к двухмерному электронному газу впервые была предложена и продемонстрирована Спектором и др. (1990). Структура, которую они использовали, формировалась поверхностными затворами, как это схематически показано на рис. 1.12. Хотя геометрия такого затвора достаточно сложна, в ее состав входят только три основных элемента, включающих точечный электронный эмиттер, три коллектора, обозначенных буквами А, В и С, и преломляющая призма. Эмиттер и коллекторные затворы поддерживаются при фиксированном и относительно высоком обратном смещении, что обеспечивает их действие как узких апертур, в то время как напряжение на затворе призмы варьируется для изменения электронной плотности под ней.
Рис.1.12. Структура преломляющего переключателя для баллистических электронов. Исток и несколько стоков, общий затвор и под ним тонкий управляющий затвор.
Электроны движутся баллистически между эмиттером и коллекторами. На их траектории можно повлиять управляющей призмой, находящейся между ними. Электроны отклоняются от (или к) нормали, если концентрация электронов над затвором меньше (больше), чем под затвором. Под действием ускоряющего напряжения на управляющей призме (от большого обратного смещения до среднего прямого смещения) можно ускорить распространение электронного луча через коллекторы А, В и С. В рабочем режиме получены явно выраженные пики токов для каждого коллектора при напряжениях затвора, равных тем, которые рассчитаны методом построения лучей.
Полевой транзистор на преломленных электронах может работать (переключать), находясь между многоканальными выходами и даже многоканальными входами, так как встречные пучки баллистических электронов имеют незначительное взаимодействие. Эти приборы могут быть скомпонованы так, чтобы выполнять довольно сложные операции, такие как переключение элементов при параллельной обработке сигналов. Ограничением же для таких приборов, по-прежнему, остается требование низких рабочих температур.
Дата добавления: 2015-10-28; просмотров: 151 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Интерференционные транзисторы | | | Нанотранзисторы на основе углеродных нанотрубок |