Читайте также:
|
|
Перекрывание атомных орбиталей при формировании двухатомных молекул АВ (А и В - атомы одного или разных элементов) ведет к линейной геометрической форме молекул (Н−Н, F−F, H−Cl).
Образование химических связей в многоатомных молекулах ведет к изменению формы и расположения орбиталей в пространстве у того атома, который образует две или более связей (атом А в частицах AВ n), поскольку, в многоатомных частицах происходит гибридизация орбиталей центрального атома А (по теории, разработанной Л. Полингом в 1931 г.).
Типы гибридизации атомных орбиталей центрального атома определяют геометрическую форму частиц (молекул, ионов) AВ n.
Чтобы определить тип гибридизации и форму химической частицы, поступают следующим образом:
- находят центральный атом и определяют число σ-связей (по числу концевых атомов);
- определяют степени окисления атомов в частице;
- составляют электронную конфигурацию центрального атома в нужной степени окисления;
- если это необходимо, проделывают то же самое для концевых атомов;
- изображают схему распределения валентных электронов центрального атома по орбиталям, при этом, вопреки правилу Гунда, максимально спаривают электроны;
- отмечают орбитали, участвующие в образовании связей с концевыми атомами;
- определяют тип гибридизации, учитывая все орбитали, участвующие в образовании связи, а также неподеленные электроны; если валентных орбиталей недостаточно, используют орбитали последующих энергетических уровней;
- по типу гибридизации определяют геометрию химической частицы.
3-6) Метод валентных связей (МВС) иначе называют теорией локализованных электронных пар, поскольку в основе метода лежит предположение, что химическая связь между двумя атомами осуществляется с помощью одной или нескольких электронных пар, которые локализованы преимущественно между ними. В отличие от ММО, в котором простейшая химическая связь может быть как двух-, так и многоцентровой, в МВС она всегда двухэлектронная и обязательно двухцентровая. Число элементарных химических связей, которые способен образовывать атом или ион, равно его валентности. Так же, как и в ММО, в образовании химической связи принимают участие валентные электроны. Волновая функция, описывающая состояние электронов, образующих связь, называется локализованной орбиталью (ЛО).
Отметим, что электроны, описываемые ЛО, в соответствии с принципом Паули должны иметь противоположно направленные спины, то есть в МВС все спины спарены, и все молекулы должны быть диамагнитны. Следовательно, МВС принципиально не может объяснить магнитные свойства молекул.
3-7) Неполярные диэлектрики. К этому классу диэлектриков относятся вещества, состоящие из атомов и молекул, не обладающих собственными дипольными моментами в отсутствии поля. Типичными примерами таких веществ являются одноатомные благородные газы; газы, состоящие из симметричных двухатомных молекул – кислород, водород, азот; различные органические жидкости масла, бензины; из твердых тел – пластмассы.
Полярные диэлектрики. Молекулы обладающие собственным дипольным моментом даже в отсутствии внешнего электрического поля называются полярными, а диэлектрики, образованные такими молекулами – полярными диэлектриками. Полярные молекулы несимметричны, электронные плотности в них смещены к одному из атомов.
Типичным примером такой молекулы служит молекула воды H2O, в которой электронные облака смещены к атому кислорода, вследствие чего центры положительных и отрицательных зарядов смещены друг относительно друга, поэтому молекула обладает собственным дипольным моментом.
3-8)Ионная связь- Химическая связь, основанная на электростатическом притяжении ионов.
Такая связь возникает при большой разнице в электроотрицательностях связываемых атомов (Δχ > 2), когда менее электроотрицательный атом почти полностью отдает свои валентные электроны и превращается в катион, а другой, более электроотрицательный атом, эти электроны присоединяет и становится анионом.
В органических соединениях ионные связи встречаются довольно редко, т.к. атом углерода не склонен ни терять, ни приобретать электроны с образованием ионов.
Свойства: В отличие от ковалентной связи ионная связь не обладает насыщаемостью. Прочность ионных связей. Вещества с ионными связями в молекулах, как правило, имеют более высокие температуры кипения и плавления.
3-9)Металлическая связь — связь между положительными ионами в кристаллах металлов, осуществляемая за счет притяжения электронов, свободно перемещающихся по кристаллу. В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов. Эти электроны достаточно слабо связаны со своими ядрами и могут легко отрываться от них. В результате в кристаллической решетке металла появляются положительно заряженные ионы и свободные электроны. Поэтому в кристаллической решетке металлов существует большая свобода перемещения электронов: одни из атомов будут терять свои электроны, а образующиеся ионы могут принимать эти электроны из «электронного газа». Как следствие, металл представляет собой ряд положительных ионов, локализованных в определенных положениях кристаллической решетки, и большое количество электронов, сравнительно свободно перемещающихся в поле положительных центров. В этом состоит важное отличие металлических связей от ковалентных, которые имеют строгую направленность в пространстве.
Свойства: обладают высокой электро- и теллопроводностью, имеют металлический блеск, пластичны (их можно ковать, деформировать без разрушения металлической связи). Большинство металлов твёрдые, причём температура плавления напрямую связана с прочностью или особенностями металлической связи.
3-10) Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.
Особенностями водородной связи, по которым её выделяют в отдельный вид, является её не очень высокая прочность, её распространенность и важность, особенно в органических соединениях, а также некоторые побочные эффекты, связанные с малыми размерами и отсутствием дополнительных электронов у водорода.
3-11)Межмолекулярное взаимодействие — взаимодействие между электрически нейтральными молекулами или атомами.
Силы Ван-дер-Ваальса включают все виды межмолекулярного притяжения и отталкивания (взаимодействие молекул между собой). Они получили название в честь Я.Д. Ван-дер-Ваальса, который первым принял во внимание межмолекулярные взаимодействия для объяснения свойств реальных газов и жидкостей.
Основу ван-дер-ваальсовых сил также составляют кулоновские силы взаимодействия между электронами и ядрами одной молекулы и ядрами и электронами другой. На определенном расстоянии между молекулами силы притяжения и отталкивания уравновешивают друг друга, и образуется устойчивая система.
Ван-дер-ваальсовы силы заметно уступают любому виду химической связи. Например, силы, удерживающие атомы хлора в молекуле хлора почти в десять раз больше, чем силы, связывающие молекулы Cl2 между собой. Но без этого слабого межмолекулярного притяжения нельзя получить жидкий и твердый хлор.
Дата добавления: 2015-10-02; просмотров: 174 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Способы образования ковалентной химической связи | | | Энергетика химических процессов. |