Читайте также:
|
|
Теперь попытаемся объяснить, что надо понимать в общем случае под математической структурой. Общей чертой различных понятий, объединенных этим родовым названием, является то, что они применимы к множеству элементов, природа которых не определена.
Чтобы определить структуру, задают одно или несколько отношений, в которых находятся его элементы (в случае групп - это отношение хτу = z между тремя произвольными элементами), затем постулируют, что данное отношение или данные отношения удовлетворяют некоторым условиям (которые перечисляют и которые являются аксиомами рассматриваемой структуры). Построить аксиоматическую теорию данной структуры - это значит вывести логические следствия из аксиом структуры, отказавшись от каких-либо других предположений относительно рассматриваемых элементов (в частности от всяких гипотез относительно их "природы").
Основные типы структур.
Отношения, являющиеся исходной точкой в определении структуры, могут быть по своей природе весьма разнообразными. То отношение, которое фигурирует в групповых структурах, называют "законом композиции": это такое отношение между тремя элементами, которое определяет однозначно третий элемент как функцию двух первых - такая структура называется алгебраической структурой (например, структура поля определяется двумя законами композиции с надлежащим образом выбранными аксиомами: сложение и умножение действительных чисел определяют структуру поля на множестве этих чисел).
Другой важный тип представляют собой структуры, определенные отношением порядка - это отношение между двумя элементами х, у, которое чаще всего мы выражаем словами " х меньше или равно у " и которое мы будем обозначать в общем случае хRу. Здесь больше не предполагается, что это отношение однозначно определяет один из элементов х, у как функцию другого. Аксиомы, которым оно подчиняется, таковы: а) для всех х хRх; b) из соотношений хRу, уRх следует х = у, с) из соотношений хRу, уRz следует хRz.
Очевидным примером множества, снабженного такой структурой, является множество целых чисел (или множество действительных чисел), причем здесь знак R заменяется на ≤. Но надо заметить, что мы не включили в число аксиом аксиому, отражающую следующее свойство, которое кажется неотделимым от того понятия порядка, каким мы пользуемся в обыденной жизни: "каковы бы ни были х, у, имеет место или хRу или уRх ". Другими словами, не исключается случай, когда два элемента могут оказаться несравнимыми.
На первый взгляд это может показаться странным, но легко привести очень важные примеры структур порядка, для которых имеет место именно это обстоятельство. Именно с таким положением вещей мы сталкиваемся, когда X, Y означают подмножества некоторого множества, а ХRY означает " X содержится в Y ", или когда х, у являются натуральными числами, а хRу означает " х делит y ", или, наконец, когда f (х) и g (x) являются действительными функциями, определенными на интервале a ≤ x ≤ b, а f (х) Rg (х) означает: "каково бы ни было х, f (х) ≤ g (х)". Эти примеры в то же время показывают, сколь велико разнообразие областей, где появляются структуры порядка.
Третий тип структур - топологических структурах (топологии) 2, в них находят абстрактную математическую формулировку интуитивные понятия окрестности, предела и непрерывности, к которым нас приводит наше представление о пространстве.
В каждой из представленных (порождающих) структур господствует уже достаточное разнообразие, так как там надо различать наиболее общую структуру рассматриваемого типа с наименьшим числом аксиом и структуры, которые получаются из нее в результате ее обогащения дополнительными аксиомами, каждая из которых влечет за собой и новые следствия.
Именно таким образом теория групп, помимо общих положений, которые справедливы для всех групп и зависят только от аксиом, перечисленных выше, содержит, в частности, теорию конечных групп (в которой добавляют аксиому, гласящую, что число элементов группы конечно), теорию абелевых групп (в которых имеем хτу = уτх, каковы бы ни были х, у), а также теорию конечных абелевых групп (в которой предполагаются выполненными обе вышеуказанные аксиомы). Точно так же среди упорядоченных множеств различают те, в которых любые два элемента сравнимы и которые называются линейно упорядоченными. Среди этих последних особо изучают множества, называемые вполне упорядоченными (в которых, так же как в множестве натуральных чисел, каждое подмножество имеет "наименьший элемент"). Подобная же градация существует и для топологических структур.
За пределами этого первоначального ядра появляются структуры, которые можно было бы назвать сложными структурами и в которые входят одновременно одна или несколько порождающих структур, но не просто совмещенные друг с другом, а органически скомбинированные при помощи одной или нескольких связывающих их аксиом. Именно такой характер носит топологическая алгебра, изучающая структуры, определяемые одним или несколькими законами композиций и одной топологией, которые связаны тем условием, что алгебраические операции являются непрерывными функциями (для рассматриваемой топологии) элементов, над которыми они производятся.
Наконец, далее начинаются собственно частные теории, в которых элементы рассматриваемых множеств, которые до сего момента в общих структурах были совершенно неопределенными, получают более определенную индивидуальность. Именно таким образом получают теории классической математики: анализ функций действительной и комплексной переменной, дифференциальную геометрию, алгебраическую геометрию, теорию чисел. Но они теряют свою былую автономность и являются теперь перекрестками, на которых сталкиваются и взаимодействуют многочисленные математические структуры, имеющие более общий характер.
Структуры являются орудиями математика: каждый раз, когда он замечает, что между изучаемыми им элементами имеют место отношения, удовлетворяющие аксиомам структуры определенного типа, он сразу может воспользоваться всем арсеналом общих теорем, относящихся к структурам этого типа, тогда как раньше он должен был бы мучительно трудиться, выковывая сам средства, необходимые для того, чтобы штурмовать рассматриваемую проблему, причем их мощность зависела бы от его личного таланта и они были бы отягчены часто излишне стеснительными предположениями, обусловленными особенностями изучаемой проблемы.
Дата добавления: 2015-10-24; просмотров: 96 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Аксиоматический метод | | | Реєстрація на сайті компанії !!! |