|
Рассмотрим точные (не асимптотические) ЛАЧХ и ЛФЧХ при одних и тех же К и Т и разных коэффициентах демпфирования μ.
При μ<0.707 на ЛАЧХ появляется точка максимума (резонансный пик). С уменьшением μ высота резонансного пика возрастает и при μ=0 стремится к бесконечности (при μ=0 ЛАЧХ имеет разрыв). Частота, на которой находится точка максимума ЛАЧХ, называется резонансной частотой. Резонансная частота находится вблизи частоты 1/Т.
Колебательное звено будет усиливать гармоническое воздействие резонансной частоты с максимальным коэффициентом усиления.
Значение ЛФЧХ находится в пределах 0…–π рад (0…–180˚). Все ЛФЧХ имеют общую точку φ = –90˚, ω=1/Т.
Рассмотрим способ построения ЛАЧХ колебательного звена. Асимптотическая ЛАЧХ состоит из двух асимптот с наклонами 0 и –40 дБ/дек и частотой сопряжения 1/Т. Однако, асимптотическая ЛАЧХ не учитывает наличие резонансного пика, и при малых значениях коэффициента демпфирования ее использовать нельзя. Чтобы построить точную ЛАЧХ в дополнение к двум асимптотам необходимо построить криволинейный участок ЛАЧХ в окрестности частоты (1/Т) это можно сделать по данным, приводимым в справочниках.
Дата добавления: 2015-09-04; просмотров: 63 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Колебательное звено | | | Примеры колебательных звеньев |