Читайте также:
|
|
Современные устройства потребления имеют очень высокие требования к качеству электроэнергии.
Фактически, вопросы качества энергии встали перед человечеством не так давно – примерно в конце 40х годов, когда были открыты технологии передачи энергии на значительные расстояния с помощью ЛЭП, а, в последствии, во времена первых ЭВМ, требования к качеству у которых были на порядок выше, чем у других устройств. Ведь очевидно, что у электродвигателя (пусть даже выполненного по современным «навороченным» технологиям) требования к качеству сети значительно ниже, чем у ЭВМ.
Многие части самых первых ЭВМ были аналоговыми, про стабилизаторы напряжения знали тогда очень мало, цифровая электроника только зарождалась. И небольшой скачек напряжения мог привести к сбою в работе сложного комплекса.
Второй проблемой стала передача энергии на длительные дистанции. Потери при передаче составляли около 70% от выработанной энергии. Особенно остро эта проблема стояла в крупных мегаполисах, у которых потребление было высоким, а возможность строить электростанции – ограниченной, главным образом по причине экологии. Тогда то и началось активное изучение электроэнергии с целью минимализации потерь. Параллельно с крупной энергетикой развивалась микроэлектроника, открытия одной области переносились в другую. Так, высокочастотные токи исследовались, в основном, в радиотехнике, однако, явления самоиндукции, наводок и помех присущи любой сети переменного напряжения, следовательно, высоковольтным сетям тоже.
Постепенно, электротехника стала отдельной наукой со своими законами и задачами. Сейчас, при проведении анализа сети, помимо тока, напряжения и мощности исследуются так же гармонический составы напряжения и тока, разности фаз (применительно к трехфазным сетям), прямая, обратная и нулевая последовательности, фликер, несинусоидальность напряжения и тока, а так же активная и реактивная составляющие мощности.
Итак, что же такое активная и реактивная мощности?
В переменном электрическом поле формула для мощности постоянного тока (P = V * I)оказывается неприменимой. Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом.
Синусоидальные величины, изменяющиеся во времени традиционно представляются с помощью комплексной плоскости.
Используя комплексную плоскость, отобразим на ней мощности:
Рис 1. «Треугольник мощностей» (S – полная мощность, P – активная мощность, Q – реактивная мощность).
Компенсация реактивной мощности является немаловажным фактором позволяющим снизить нагрузки на электросеть и решить вопрос энергосбережения.
В целом результаты проводимых анализов показывают необходимость компенсации реактивной мощности как у потребителя, так и в электрических сетях поэтому в Приказе Минпромэнерго РФ № 49 от 22.02.07 «О порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договорах энергоснабжения)» оговорены предельные значения коэффициента реактивной мощности.
Протекающий реактивный ток вызывает потери мощности и энергии в линиях и трансформаторах как энергосистемы, так и потребителя, увеличение cos φ с 0,6 до 0,9 приводит к уменьшению мощности подстанций на 14 % и уменьшению их числа на 26 %.
Реактивная мощность является фактором, снижающим качество электроэнергии, приводящим к таким отрицательным явлениям, как дополнительные потери в проводниках, вследствие увеличения тока, завышение мощности трансформаторов и сечения кабелей, отклонение напряжения сети от номинала.
Индуктивной реактивной нагрузке, создаваемой электрическими потребителями, можно противодействовать с помощью ёмкостной нагрузки, подключая точно рассчитанный конденсатор. Это позволяет снизить реактивную мощность, потребляемую от сети и называется корректировкой коэффициента мощности или компенсацией реактивной мощности.
Из вышеизложенного мы понимаем всю важность исключения или хотя бы понижения эффектов, возникающих из-за низкого коэффициента мощности. Для достижения такого результата необходимы конденсаторы.
В зависимости от подключения конденсаторной установки возможны следующие виды компенсации реактивной мощности:
Индуктивной реактивной нагрузке, создаваемой электрическими потребителями, можно противодействовать с помощью ёмкостной нагрузки, подключая точно рассчитанный конденсатор. Это позволяет снизить реактивную мощность, потребляемую от сети и называется корректировкой коэффициента мощности или компенсацией реактивной мощности.
Из вышеизложенного мы понимаем всю важность исключения или хотя бы понижения эффектов, возникающих из-за низкого коэффициента мощности. Для достижения такого результата необходимы конденсаторы.
В зависимости от подключения конденсаторной установки возможны следующие виды компенсации реактивной мощности:
Индивидуальная или постоянная компенсация, при которой индуктивная реактивная мощность компенсируется непосредственно в месте её возникновения, что ведет к разгрузке подводящих проводов (для отдельных, работающих в продолжительном режиме потребителей с постоянной или относительно большой мощностью - асинхронные двигатели, трансформаторы, сварочные аппараты, разрядные лампы и т.д.);
Активная мощность - это среднее за период Т значение мгновенной мощности.
Реактивная мощность это величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, например, при перемагничивании индуктивного элемента.
В ГОСТе 13109-97 указан такой параметр, как коэффициент мощностей (cos φ), однако, на практике удобней использовать tg φ. Простая тригонометрия: Cos φ = P/S, tg φ = Q/P. По ГОСТу, они соответственно должны быть равны 0,95 и 0,35.
2). Принцип работы компенсаторов реактивной мощности (КРМ).
Для снижения реактивной составляющей в сетях используется специальное компенсационное оборудование. Говоря просто, оно представляет из себя искусственную нагрузку, имеющую чисто ёмкостной (чаще всего) или индуктивный характер. В современных компенсаторах используется так же электронный блок управления, изменяющий величину нагрузки, в зависимости от изменения cos φ в сети.
Рис. 2. Схема компенсатора реактивной мощности
КРМ имеет свой встроенный анализатор сети. Чаще всего он собран на микроконтроллере, не имеет памяти для измеренных данных, а единственной его задачей является измерение угла φ между током и напряжением с последующей подачей сигнала на контакторы конденсаторов. Для подбора необходимой в текущий момент времени ёмкости используется батарея конденсаторов, нужное количество которых подключается параллельно сети.
Как видно на схеме, угол φ измеряется только по фазе А. Это объясняется тем, что нагрузка по фазам примерно одинаковая и дополнительные измерения не требуются.
В случае компенсации ёмкостной составляющей, вместо конденсаторов, соответственно, устанавливаются катушки индуктивности.
Есть так же более сложные версии компенсаторов, имеющих тиристорное управление и способных компенсировать импульсные (до 20мс) скачки реактивной энергии.
От теории – к практике.
В данном разделе будет рассказано про измерения, проводившиеся на реальном объекте в г. Москве летом 2011 года.
Объект – продуктовая база. Задача – повысить эффективность сети. Имеется схема сети:
Рис. 3. Схема измеряемого объекта
По схеме мы видим, что базовые измерения необходимо провести в 4х точках: Рун-1 Ввод 1, Рун-1 Ввод 2, Рун-2 Ввод 1, Рун-2 Ввод 2 (Обозначаем точки 1,2,3,4 соответственно). Для этой цели больше всего подошли приборы ППКЭ. Параметры каждой точки измерялись в течении двух недель. Результаты можно увидеть в таблице:
Таблица 1. Результаты измерений ПКЭ на объекте
Заявл.U | Заявл.U | Заявл.U | Заявл.U | ||||
Счетчик | СЭТ3а- 02-03 | Счетчик | СЭТ3а- 02-03 | Счетчик | ПСЧ4а-05-02 | Счетчик | СЭТ3а- 02-03п |
P | 35.0 | P | 55.0 | P | 12.0 | P | 18.0 |
Q | 22.0 | Q | 50.0 | Q | 12.0 | Q | 10.0 |
tg(φ) | 0.62 | tg(φ) | 0.9 | tg(φ) | 1.0 | tg(φ) | 0.5 |
cos(φ) | 0.85 | cos(φ) | 0.75 | cos(φ) | 0.7 | cos(φ) | 0.89 |
U | Норм | U | Норм | U | Норм | U | Норм |
K2 | Норм | K2 | Норм | K2 | Норм | K2 | Норм |
K0 | Норм | K0 | Норм | K0 | Норм | K0 | Норм |
№ гарм.U | 3.9 | № гарм.U | 3.5.7.9 | № гарм.U | 3.5.7.9 | № гарм.U | 3.5.7 |
№ гарм. I | 3.5.7.9 | № гарм. I | 3.5.7.9 | № гарм. I | 3.5.7.9 | № гарм. I | 3.5.7 |
мощность установки КРМ кВАр: | мощность установки КРМ кВАр | мощность установки КРМ кВАр | мощность установки КРМ кВАр |
КРМ подбирается с тем расчетом, чтобы показатели tg φ и cos φ пришли в норму (в соответствие ГОСТу). Основной параметр КРМа – мощность, которую он может компенсировать. Другими словами, мощность КРМа – это его реактивная мощность, взятая с противоположным знаком присутствующей в сети.
Однако, нужно заметить, что приведенные выше расчеты подходят только для идеальной сети – на практике необходимо учитывать индуктивности и сопротивление проводов, индивидуальные параметры каждого отдельного потребителя. Поэтому на объекте был проведен ряд дополнительных измерений, причем проводились они прибором Memobox 360 на конкретных потребителях в точках последующей установки КРМов.
Нагреватели практически не создают реактивной составляющей, чего не скажешь про двигатели. На объекте в большом количестве присутствуют промышленные холодильные установки с компрессорами мощностью до 11 кВт. Логично предположить, что основную часть реактивной составляющей в сети давали именно они.
Полученные данные были переданы в фирму, занимающуюся производством и установкой КРМов. В последствии, часть оборудования была ими оборудована. Результаты измерений после установки:
Таким образом, энергоэффективность сети повышается на 30%.
Дата добавления: 2015-09-01; просмотров: 66 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Им. В.С. Черномырдина | | | МГОУ имени В.С. Черномырдина |