Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

V Пример. Треугольник является равносторонним, если и только если он является треугольником.

V Пример | V Пример | V Пример | V Пример | V Пример | V Пример | Введение | V Пример | V Пример | V Пример |


Читайте также:
  1. B16. Готовы ли Вы петь бесплатно в церковном хоре (например, если у храма нет денег, чтобы заплатить)?
  2. II. Пример разработки упаковки для парфюмерных изделий
  3. MB: Как Вы думаете, нужно ли женщине жертвовать своим до­стоинством ради того, чтобы со­хранить полную семью? К примеру, терпеть рядом дурного мужчину ради детей?
  4. T.V.: Тебе больше нравится выступать на больших фестивалях? или на небольших концертных площадках, например клубах?
  5. V Пример
  6. V Пример
  7. V Пример

Треугольник является равносторонним, если и только если он является треугольником.

 

5. Отрицание — это унарная логическая связка, образующая из формулы А новую формулу ØА, в которой утверждается отсутствие положения дел, описываемого в выражении А. Прототипом отрицания как связки в естественном языке является выражение «неверно, что» и его аналоги.

V Пример

Неверно, что некоторые планеты солнечной системы не вращаются вокруг Солнца (Øp). Неверно, что наш мир существует и не существует (Ø(pÙØp)) и т. п.

 

При этом будем иметь в виду, что формула классической логики высказываний — это любое правильно построенное выражение языка этой логической теории, т. е. выражение правильно фиксирующее логическую форму сложного высказывания. Формулой классической логики высказываний является всякая пропозициональная переменная p («элементарная формула»), а также логические единства пропозициональных переменных и пропозициональных связок (сложная формула): pÙq, pÚq, pÉq, pº q, Ø p, Ø ( pÙq ) и т. п. Формула, входящая в состав некоторой формулы, называется её подформулой, равно как и сама исходная формула.

Истинностная функция пропозициональных связок


Дата добавления: 2015-09-05; просмотров: 47 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
V Пример| Табличное определение истинности

mybiblioteka.su - 2015-2024 год. (0.006 сек.)