Читайте также:
|
|
Смешанное произведение векторов.
Определение
Смешанным произведением трех векторов , , называется число, равное скалярному произведению вектора на вектор :
Геометрический смысл смешанного произведения
Геометрический смысл смешанного произведения: если тройка векторов правая, то их смешанное произведение равно объему параллелепипеда построенного на этих векторах: . В случае левой тройки смешанное произведение указанных векторов равно объему параллелепипеда со знаком минус: . Если , и компланарны, то их смешанное произведение равно нулю.
Итак, из выше сказанного можно сделать вывод, что объем параллелепипеда, построенного на векторах , и равен модулю смешанного произведения этих векторов:
Объем пирамиды, построенной на этой тройке векторов равен
Свойства смешанного произведения:
1°
2°
3° Три вектора компланарны тогда и только тогда, когда
4° Тройка векторов является правой тогда и только тогда, когда . Если же , то векторы , и образуют левую тройку векторов.
5°
6°
7°
8°
9°
10° Тождество Якоби:
Если векторы , и заданы своими координатами, то их смешанное произведение вычисляется по формуле
Дата добавления: 2015-08-27; просмотров: 99 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Основные детали катушки тесла | | | Порядок отримання асигнувань із загального фонду бюджету |