Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Метод парабол (метод Симпсона)

Введение | Постановка задачи | Метод прямоугольников | Метод Гаусса-Кронрода | Функциональные модели решения задачи | Программная реализация решения задачи | Пример выполнения программы |


Читайте также:
  1. I. Коммуникативные игры, в основе которых лежит методический прием ранжирования.
  2. I. Новые нормативные и методические документы в области воздухоохранной деятельности
  3. I. Организационно-методический раздел
  4. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ
  5. IV. МЕТОДИЧЕСКАЯ ЧАСТЬ ПРОЕКТА
  6. IV. МЕТОДИЧЕСКАЯ ЧАСТЬ ПРОЕКТА
  7. Quot;НЕДЕЛАНИЕ". ОСТАНОВКА ВНУТРЕННЕГО ДИАЛОГА. МЕТОДЫ

 

Использовав три точки отрезка интегрирования можно заменить подынтегральную функцию параболой. Обычно в качестве таких точек используют концы отрезка и его среднюю точку. В этом случае формула имеет очень простой вид

 

.

 

 

Если разбить интервал интегрирования на 2N равных частей, то имеем

 

,

где .

 


Дата добавления: 2015-08-27; просмотров: 42 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Метод трапеций| Метод Гаусса

mybiblioteka.su - 2015-2025 год. (0.006 сек.)