Читайте также:
|
|
При охлаждении двигателей возникают дополнительные потери. Они уменьшают положительный эффект от повышения температуры газа перед турбиной. Большинство перечисленных выше требований заключается в минимизации этих потерь. Основными потерями являются:
- термодинамические потери;
- затраты энергии на сжатие охлаждающего воздуха;
- затраты энергии на прокачку охлаждающего воздуха;
- потери при смешении охлаждающего воздуха с потоком газа в проточной части;
- потери, связанные с изменением геометрических характеристик профилей охлаждаемых лопаток по сравнению с неохлаждаемыми;
- потери от увеличения нестационарности потока в решетках профилей.
Проанализируем эти потери.
1.4.1 Термодинамические потери
При использовании воздушного охлаждения охлаждающий воздух отбирают в различных сечениях компрессора и подводят в различных сечениях турбины. Этот воздух не участвует в подводе тепла в камере сгорания. Воздух, который отбирают из промежуточных ступеней компрессора, сжимается не полностью. Попадая в проточную часть турбины, охлаждающий воздух смешивается с потоком газа и снижает его температуру. Все это приводит к снижению работы термодинамического цикла двигателя и будет проанализировано нами далее.
1.4.2 Затраты энергии на сжатие охлаждающего воздуха
На сжатие охлаждающего воздуха затрачивается энергия, и это приводит к потере полезной работы термодинамического цикла. Однако если этот воздух подводится к турбине, то он смешивается с газом и участвует в совершении работы расширения в последующих ступенях. Поэтому потери уменьшаются. Чем раньше подводится воздух, тем меньше эти потери. На 1% потерь на сжатие приходится 0,5-0,8% потерь работы цикла.
Воздух, охлаждающий диск последней ступени турбины и корпус ее последнего каскада, в работе турбины не участвует, однако выводится на вход в сопло и участвует в создании тяги.
Часть охлаждающего воздуха выходит в атмосферу. Это воздух, идущий на охлаждение заднего подшипника и в заднюю разгрузочную полость турбины.
1.4.3 Затраты энергии на прокачку охлаждающего воздуха
К этим потерям относятся:
- потери давления на преодоление гидравлического сопротивления на пути воздуха от места отбора до охлаждаемой детали;
- повышение температуры воздуха на этом пути из-за его подогрева;
- затраты энергии на разгон воздуха до окружной скорости, соответствующей месту его выхода из элементов ротора
1.4.4 Потери при смешении охлаждающего воздуха с потоком газа в проточной части
Пройдя по каналам охлаждающего тракта, воздух выходит в проточную часть турбины и смешивается с основным потоком газа. Если воздух выпускается на поверхности профилей лопаток, то смешение происходит в межлопаточном канале, Если же воздух выпускается из выходных кромок лопаток, то он смешивается с газом в осевом зазоре между соседними лопаточными венцами. Кроме того, воздух может попасть в проточную часть турбины из системы охлаждения ротора и корпуса.
Процесс смешения приводит к потере кинетической энергии основного потока, которая затрачивается на выравнивание полей скоростей, давлений и плотностей потока. Эти потери возрастают в увеличением разности соответствующих параметров потоков воздуха и газа, а также с увеличением относительного потока охлаждающего воздуха и углов его отклонения от потока газа.
При выдуве воздуха из выходных кромок лопаток на величину потерь также влияет расположение перемычек в выходной щели: чем чаше и чем ближе к выходу они расположены, тем больше потери.
Однако выдув воздуха из щели в выходной кромке уменьшает донное сопротивление профиля и связанные с ним кромочные потери Поэтому потери от смешения частично компенсируются.
В случае выпуска воздуха из отверстий или щелей, расположенных в зоне входной кромки, на спинке или корытце лопатки, возникают дополнительные профильные потери, обусловленные его смешением с основным потоком газа, а также более ранним переходом ламинарного пограничного слоя в турбулентный. Величина этих потерь зависит от:
- места расположения выпускных отверстий вдоль профиля;
- угла выхода потока воздуха;
- скорости истечения воздуха;
- состояния и параметров пограничного слоя на участке выдува;
- протяженности участка выдува;
- уровня возмущений, которые вносит в пограничный слой выдуваемый воздух.
Выдуваемый воздух оказывает значительно большее влияние, если пограничный слой – ламинарный; влияние на турбулентный слой значительно меньше.
1.4.5 Потери, связанные с изменением геометрических характеристик профилей охлаждаемых лопаток по сравнению с неохлаждаемыми
Для уменьшения аэродинамического сопротивления профили лопаток необходимо делать тонкими. Однако это не позволяет разместить внутри лопаток каналы для охлаждающего воздуха. Поэтому профили лопаток делают толстыми, что приводит к увеличению аэродинамического сопротивления.
Кроме того, для улучшения охлаждения передней и задней кромок лопатки ее профиль специально укорачивают, чтобы приблизить кромки к каналам охлаждения. Это искажает форму профиля и увеличивает его аэродинамическое сопротивление. Охлаждение выходной кромки можно улучшить, если расположить в ней щель для прохода охлаждающего воздуха. Однако это требует увеличения толщины выходной кромки, что также увеличивает аэродинамическое сопротивление.
Искажение аэродинамических профилей приводит к росту потери не только в данной решетке профилей, но и в следующих за ней. Так, например, утолщение выходной кромки сопловых лопаток приводит к повышению интенсивности вихрей и увеличению неравномерности поля скоростей и давлений на входе в рабочие лопатки.
Увеличение радиуса входной кромки приводит к уменьшению длины участка с ламинарным пограничным слоем, что также увеличивает профильные потери.
1.4.6 Потери от увеличения нестационарности потока в решетках профилей
Кромочные следы, образующиеся за лопатками, обусловливают периодическую нестационарность полей скоростей и давлений на входе в последующий лопаточный венец. Это приводит к дополнительным потерям.
Выпуск охлаждающего воздуха через щели в выходных кромках существенно изменяет характер неравномерности поля скоростей и давлений потока в следе за решеткой. Скорость потока в ядре струи и ширина ядра увеличиваются с возрастанием расхода выдуваемого воздуха.
Увеличение ширины задней кромки для обеспечения вытекания охлаждающего воздуха приводит к увеличению неравномерности потока на входе в следующую решетку м к дополнительным потерям за счет нестационарности. Эта неравномерность и потери увеличиваются, если выдув происходит не только через входную кромку, но и через отверстия в боковой поверхности лопатки. В этом случае происходит дополнительная турбулизация потраничнгого слоя, утолщается закромочный след, возрастает неравномерность потока и соответственно растут потери.
Дата добавления: 2015-08-26; просмотров: 166 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Требования к системам охлаждения | | | Термодинамический анализ |