Читайте также: |
|
В предыдущем пункте я рассмотрела способность озона поглощать ультрафиолетовое излучение с точки зрения роли озонового слоя как нашего защитника – “волшебного щита планеты”. Однако сам процесс такого поглощения не проходит бесследно для земной атмосферы. Энергия, которую несет излучение в указанном диапазоне длин волн, в результате поглощения передается атмосферному газу, вызывая его нагрев. Оценки показывают, что выше примерно 20км и в стратосфере, и в большей части мезосферы этот процесс является основным источником нагрева, определяющим, таким образом температуру – её высотное и широтное распределение.
Распределение температуры контролирует динамические процессы в атмосферном газе. Таким образом, вся система циркуляции в стратосфере, включая и вертикальный перенос газа, зависит от распределения озона. И если под влиянием антропогенных процессов распределение озона заметно изменится, должна измениться вся картина динамических процессов, включая и взаимодействие стратосферы и тропосферы.
Расчеты с помощью атмосферных моделей показывают, что если повсеместно уменьшить концентрацию озона в два раза, то в мезосфере произойдет охлаждение атмосферного газа на 20 С. Это охлаждение в большей части стратосферы (18–40км) составит 6 – 8 С, а на стыке тропосферы и стратосферы (7 – 18км) – 2 – 3 С.
До этого времени я рассматривала лишь одно оптическое свойство молекул озона – поглощать мягкое ультрафиолетовое излучение. Однако молекулы O3 обладают и другими свойствами, существенными для теплового режима атмосферы. Наиболее важное из них – способность поглощать излучение в инфракрасном диапазоне, точнее в полосе с длиной волны примерно 9,6мкм
Для того чтобы понять важность этого свойства озона для теплового режима атмосферы, я немного отступлю от основной линии этого пункта реферата и кратко рассмотрю формирование теплового режима атмосферы и поверхности Земли.
В чем же суть так называемого парникового эффекта? Суть его состоит в том, что поверхность Земли поглощать энергию падающего на неё солнечного излучения (ближнего ультрафиолетового, видимого, инфракрасного – всего, которое до неё дошло, почти не поглотившись в воздухе) и переизлучает эту энергию в виде тепловых лучей сугубо в инфракрасной области. Если бы это инфракрасное излучение не поглощалось в атмосфере и не уходило назад в космическое пространство, на Земле было бы невыносимо холодно. Но этого не происходит потому, что большая часть переизлученной энергии не покидает нижних слоев атмосферы, а поглощается там облаками и различными малыми составляющими.
Наиболее активны в этом поглощении две атмосферные составляющие – углекислый газ и пары воды. Именно они обеспечивают задержку в атмосфере большей части инфракрасного излучения. Однако существует так называемое окно прозрачности в полосе 8 – 13 мкм, где суммарное поглощение указанными двумя составляющими (CO2 и H2O) мало. В этой области в роли основного поглотителя выступает озон. Как отмечалось выше, озон имеет сильную полосу поглощения в области 9,6мкм, которая и обеспечивает захват уходящего инфракрасного излучения в середине окна. Отмечу, что у молекулы озона имеются и другие полосы поглощения в инфракрасной области (например, с длиной волны 13,8 и 14,4 мкм). Но там они накладываются на сильные полосы поглощения H2O и CO2.
В последние два десятилетия человечество все больше беспокоит проблема усиления парникового эффекта из–за увеличения в атмосфере количества CO2. Факт монотонного роста концентрации двуокиси углерода в тропосфере в результате человеческой деятельности (уменьшение площади лесов, сжигании органического топлива, и другие промышленные процессы) установлен с высокой степенью достоверности. Этот рост за последние 20 лет составляет 0,3–0,4% в год.
Если тенденция роста CO2 в последующие десятилетия сохранится, то удвоение количества CO2 в атмосфере, которое существовало в доиндустриальную эру, должно произойти примерно в середине XXI в. Правда, наиболее оптимистические модели предсказывают такое удвоение лишь к 2100г. Конечно, реальная картина будет зависеть, прежде всего, от того, как быстро будет расти потребляемое человечеством количество энергии и насколько удастся заменить существующие сегодня источники энергии новыми, чистыми в экологическом отношении.
При удвоении количества двуокиси углерода в атмосфере ожидаемое увеличение средней температуры нижней атмосферы составляет 2–3С в средних и низких широтах и 5–6С в полярных областях. При удвоении количества углекислого газа в стратосфере, должно произойти понижение температуры (на 10–15 С), поскольку молекулы CO2 принимают активное участие в процессах охлаждения стратосферного воздуха. Такое изменение климата Земли может иметь очень серьезные последствия для многих регионов земного шара. Именно поэтому в настоящее время идет активное обсуждение возможностей уменьшения выбросов углекислого газа в атмосферу и замедление роста количества CO2.
Но не только рост концентрации CO2 может привести к усилению парникового эффекта. Свой вклад вносит и рост концентрации озона в тропосфере, вызванный антропогенным загрязнением атмосферы.
Конечно, картина с озоном далеко не проста, как в случае CO2. Ведь молекулы O3 играют роль и в процессах нагрева атмосферного газа (за счет поглощения ультрафиолетового излучения Солнца в стратосфере и инфракрасного излучения поверхности в основном в тропосфере) и в процессах его охлаждения (за счет излучения молекулами O3 части поглощенной энергии). Значит можно ожидать уменьшение количества озона в стратосфере из антропогенных источников и увеличение его в тропосфере.
Все эти сложности приводят к тому, что оценить суммарный эффект ожидаемого изменения количества озона не так просто. Тем не менее наиболее надежные, по моему мнению являются расчеты по математическим моделям, учитывающим как радиационные, так и конвективные эффекты, показывают, что при ожидаемом удвоении количества озона в тропосфере и уменьшении в двое в стратосфере климатический эффект должен быть в большей мере подобен эффекту от ожидаемого удвоения количества двуокиси углерода, но с меньшей амплитудой. Иначе говоря, если в случае удвоения CO2 вероятно увеличение температуры в среднем по Земле на 3–4С, то в случае описанного изменения количества озона это увеличение составит около 1 С. Уменьшение вдвое количества стратосферного озона также должно вызвать эффект, подобный эффекту удвоения количества CO2,– охлаждение стратосферы на 15–20С
Следует отметить, что антропогенное увеличение количества озона в тропосфере, которое я рассматриваю, прежде всего, с точки зрения дополнительного вклада в парниковый эффект, неизбежно будет сопровождаться и другими отрицательными эффектами. Озон обладает токсическими свойствами, которые могут приводить к поражению легочных тканей человека (и животных), ставя таким образом под угрозу здоровье людей. Ожидается влияние обогащенного озоном воздуха на растения, а также на различные (особенно легкоокисляющиеся) материалы.
Подводя итоги сказанного в этом пункте, следует подчеркнуть, что антропогенное увеличение количества озона в тропосфере предвещает нам также мало радостей, как и антропогенное разрушение стратосферного озона.
Дата добавления: 2015-08-17; просмотров: 55 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Озоносфера | | | Окислительно-восстановительные методы. |