Читайте также:
|
|
Развитие криптографии в XX веке было стремительным, но неравномерным. Анализ истории ее развития как специфической области человеческой деятельности выделяет три основных периода.
1. Начальный, имевший дело лишь с ручными шифрами, начавшийся в седой древности, закончился лишь в конце тридцатых годов XX века. Криптография за это время прошла длинный путь от магического искусства древних жрецов до будничной прикладной профессии чиновников секретных ведомств.
2. Следующий период отмечен созданием и широким внедрением в практику сначала механических, потом электромеханических и, наконец, электронных устройств шифрования, созданием сетей засекреченной связи. Его началом можно считать применение телеграфных шифровальных машин, использующих длинный одноразовый ключ. Длится он по наши дни. Однако к середине семидесятых годов было достигнуто положение, когда повышение стойкости шифров отошло на второй план. С развитием разветвленных коммерческих сетей связи, электронной почты и глобальных информационных систем самыми главными стали проблемы распределения секретных ключей и подтверждения авторства. К ним теперь привлечено внимание широкого круга криптологов.
3. Началом третьего периода развития криптологии обычно считают 1976 год, когда американские математики Диффи и Хеллман предложили принципиально новый вид организации засекреченной связи без предварительного снабжения абонентов секретными ключами, так называемое шифрование с открытым ключом. В результате стали появляться криптографические системы, основанные на подходе, сформулированном еще в сороковых годах Шенноном. Он предложил строить шифр таким способом, чтобы его раскрытие было эквивалентно решению математической задачи, требующей выполнения объемов вычислений, превосходящих возможности современных ЭВМ. Новый период развития криптографии характеризуется появлением полностью автоматизированных систем шифрованной связи, в которых каждый пользователь имеет свой индивидуальный пароль для подтверждения подлинности, хранит его, к примеру, на магнитной карте и предъявляет при входе в систему, а весь остальной процесс проведения секретной связи происходит автоматически.
Как бы ни были сложны и надежны криптографические системы - их слабое место при практической реализации - проблема распределения ключей. В традиционных криптосистемах одним и тем же секретным ключом осуществляется как шифрование, так и дешифрование сообщения. Для того, чтобы был возможен обмен конфиденциальной информацией между двумя субъектами ИС, ключ должен быть сгенерирован одним из них, а затем в конфиденциальном порядке передан другому. То есть в общем случае для передачи ключа опять же требуется использование какой-то криптосистемы.
Для решения этой проблемы на основе результатов, полученных классической и современной алгеброй, были предложены системы с открытым ключом.
Суть их состоит в том, что каждым адресатом ИС генерируются два ключа, связанные между собой по определенному правилу. Один ключ объявляется открытым, а другой закрытым. Открытый ключ публикуется и доступен любому, кто желает послать сообщение адресату. Секретный ключ сохраняется в тайне.
Исходный текст шифруется открытым ключом адресата и передается ему. Зашифрованный текст в принципе не может быть расшифрован тем же открытым ключом. Дешифрование сообщение возможно только с использованием закрытого ключа, который известен только самому адресату.
Криптографические системы с открытым ключом используют так называемые необратимые или односторонние функции, которые обладают следующим свойством: при заданном значении x относительно просто вычислить значение f(x), однако если y = f(x), то нет простого пути для вычисления значения x.
Множество классов необратимых функций и порождает все разнообразие систем с открытым ключом. Однако не всякая необратимая функция годится для использования в реальных ИС.
В самом определении необратимости присутствует неопределенность. Под необратимостью понимается не теоретическая необратимость, а практическая невозможность вычислить обратное значение, используя современные вычислительные средства за обозримый интервал времени.
Функцией-ловушкой называется односторонняя функция, для которой обратную функцию вычислить просто, если имеется некоторая дополнительная информация, и сложно, если такая информация отсутствует.
В качестве задач, приводящих к односторонним функциям, можно назвать следующие.
1. Разложение числа на простые сомножители.
Вычислить произведение двух простых чисел очень просто. Однако, для решения обратной задачи – разложения заданного числа на простые сомножители, эффективного алгоритма в настоящее время не существует.
2. Дискретное логарифмирование в конечном простом поле.
Криптосистемы с открытым ключом основываются на односторонних функциях-ловушках. При этом открытый ключ определяет конкретную реализацию функции, а секретный ключ дает информацию о ловушке.
Поэтому, чтобы гарантировать надежную защиту инфоpмации, к системам с открытым ключом (СОК) предъявляются два важных и очевидных требования:
1. Преобразование исходного текста должно быть необратимым и исключать его восстановление на основе открытого ключа.
2. Определение закрытого ключа на основе открытого также должно быть невозможным на современном технологическом уровне. При этом желательна точная нижняя оценка сложности (количества операций) раскрытия шифра.
Алгоритмы шифpования с открытым ключом получили широкое распространение в современных информационных системах. Так, алгоритм RSA стал мировым стандартом де-факто для открытых систем и рекомендован МККТТ.
Вообще же все предлагаемые сегодня криптосистемы с открытым ключом опираются на один из следующих типов необратимых преобразований:
1. Разложение больших чисел на простые множители.
2. Вычисление логарифма в конечном поле.
3. Вычисление корней алгебраических уравнений.
Отметим, что алгоритмы криптосистемы с открытым ключом (СОК) можно использовать в трех назначениях.
При шифровании с открытым ключом для шифрования и расшифровывания используются разные ключи, и знание одного из них не дает практической возможности определить второй. Поэтому ключ для шифрования может быть сделан общедоступным без потери стойкости шифра, если ключ для расшифровывания сохраняется в секрете, например, генерируется и хранится только получателем информации. Шифруют и сейчас традиционными методами, но рассылка ключей и цифровая подпись стали выполняться уже по-новому. Сейчас два метода шифрования с открытым ключом получили признание и закреплены в стандартах. Национальный институт стандартов и технологий США NIST (бывший ANSI) принял стандарт MD 20899, основанный на алгоритме ЭльГамаля, а на основе алгоритма RSA приняты стандарты ISO/IEC/DIS 9594-8 международной организацией по стандартизации и Х.509 международным комитетом по связи.
Дата добавления: 2015-08-20; просмотров: 51 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
МОДУЛЬ 2 ОСОБЕННАЯ ЧАСТЬ | | | Шифр Ривеста-Шамира-Алдемана |