Читайте также: |
|
Если монокристалл или поликристаллический плот подвергается сжатию, растяжению или другой деформации, его поведение очень похоже на поведение металлов, на которые действует напряжение. До известного предела модель находится в области упругой деформации. За этой границей модель начинает скользить вдоль одного из трех равноправных направлений, вдоль плотно упакованных рядов. Скольжение происходит за счет перехода пузырьков в одном ряду над пузырьками соседнего ряда на расстояние, равное промежутку между соседними пузырьками. Очень интересно наблюдать за этим процессом. Движение вдоль всего ряда не одновременное, начинается оно на одном конце с появления «дислокации», где в рядах по одну сторону линии скольжения в одном месте оказывается на один пузырек больше, нежели в рядах по другую сторону. Эта дислокация затем пробегает вдоль линии скольжения от одного конца кристалла до другого; в результате происходит проскальзывание на одно «межатомное» расстояние. Процесс такого рода предположили Орован, Поляни и Тэйлор для объяснения малости силы, вызывающей пластическое скольжение в металлических структурах. В теории, выдвинутой Тэйлором для объяснения механизма пластической деформации кристаллов, рассматривается взаимодействие и равновесие таких дислокаций. Пузырьки дают поразительную иллюстрацию того, что, как думают, происходит в металлах. Иногда дислокации движутся совсем медленно и на прохождение кристалла им требуется время порядка секунд; можно увидеть и неподвижные дислокации в кристаллах, напряжение в которых неоднородно. Они выглядят как короткие черные черточки. При сжатии поликристаллического плота эти черточки разбегаются во всех направлениях по кристаллу.
На фиг. 6 (лист 3, стр. 286) показаны примеры дислокаций. На фиг. 6, а дислокации имеют ограниченный характер, протягиваясь на длину около шести пузырьков. На фиг. 6, б дислокации простираются на двенадцать пузырьков, а на фиг. 6, в влияние дислокаций можно проследить на протяжении примерно пятидесяти пузырьков. Большая жесткость маленьких пузырьков приводит к более длинным дислокациям. Изучение любой массы пузырьков показывает, однако, что для каждого размера пузырьков не существует стандартной длины дислокаций. Она зависит от природы напряжений в кристалле. Границу между двумя кристаллами с осями под углом 30° друг к другу (максимальный возможный угол) можно рассматривать как серию дислокаций в чередующихся рядах, и в этом случае дислокации очень короткие. При уменьшении угла между соседними кристаллами дислокации возникают в более широких интервалах и в то же время становятся длиннее, пока, наконец, не образуется единственная дислокация в большом объеме с совершенной структурой (фиг. 6).
На фиг. 7 (лист 4, стр. 287) показаны три параллельные дислокации. Если (следуя Тэйлору) различать положительные и отрицательные дислокации, то это положительная, отрицательная и снова положительная, считая слева направо. Полоса между двумя последними имеет три лишних пузырька, что можно увидеть, если смотреть вдоль рядов в горизонтальном направлении. На фиг. 8 (лист 4, стр. 287) показана дислокация, распространяющаяся от границ зерна, что представляет собой часто встречающийся эффект. На фиг. 9 (лист 4, стр. 287) показано то место, где стоят два пузырька, а не один. Это можно рассматривать как предельный случай положительной и отрицательной дислокаций в соседних рядах, когда сжатые стороны дислокаций находятся друг против друга. Противоположный случай привел бы к возникновению дырки, т. е. одного пузырька не хватало бы там, где встречаются дислокации.
1) G. I. Т а у 1 о г, Ргос. Roy. Soc., A145, 362 (1934).
1) W. L. Bragg, Journ. Sci. Instr., 19, 148 (1942).
Дата добавления: 2015-08-20; просмотров: 48 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Границы зёрен | | | Заявка по набору персонала |