Читайте также:
|
|
Факторный анализ позволяет решить две важные проблемы исследователя: описать объект измерения всесторонне и в то же время компактно. С помощью факторного анализа возможно выявление скрытых переменных факторов, отвечающих за наличие линейных статистических связей корреляций между наблюдаемыми переменными.
Например, анализируя оценки, полученные по нескольким шкалам, исследователь замечает, что они сходны между собой и имеют высокий коэффициент корреляции, он может предположить, что существует некоторая латентная переменная, с помощью которой можно объяснить наблюдаемое сходство полученных оценок. Такую латентную переменную называют фактором. Данный фактор влияет на многочисленные показатели других переменных, что приводит нас к возможности и необходимости выделить его как наиболее общий, более высокого порядка.
Таким образом можно выделить 2 цели Факторного анализа:
определение взаимосвязей между переменными, их классификация, т. н. «объективная R-классификация»;
сокращение числа переменных.
Факторный анализ может быть 1) разведочным — он осуществляется при исследовании скрытой факторной структуры без предположения о числе факторов и их нагрузках; и 2) конфирматорным, предназначенным для проверки гипотез о числе факторов и их нагрузках (примечание 2). Практическое выполнение факторного анализа начинается с проверки его условий. В обязательные условия факторного анализа входят:
Все признаки должны быть количественными.
Число признаков должно быть в два раза больше числа переменных.
Выборка должна быть однородна.
Исходные переменные должны быть распределены симметрично.
Факторный анализ осуществляется по коррелирующим переменным.
При анализе в один фактор объединяются сильно коррелирующие между собой переменные, как следствие происходит перераспределение дисперсии между компонентами и получается максимально простая и наглядная структура факторов. После объединения коррелированность компонент внутри каждого фактора между собой будет выше, чем их коррелированность с компонентами из других факторов. Эта процедура также позволяет выделить латентные переменные, что бывает особенно важно при анализе социальных представлений и ценностей.
Дата добавления: 2015-08-20; просмотров: 32 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Использование дескриптивного анализа данных при проведении маркетинговых исследований: расчет средних величин, моды, среднеквадратического отклонения | | | Использование АВС-анализа в маркетинговых исследованиях |