Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

В коллоидно-дисперсных системах частицы дисперсной фазы состоят из множества соединенных между собой атомов, молекул либо ионов.

Определение дисперсных систем | Степень дисперсности есть величина, показывающая какое число частиц можно вплотную уложить на отрезке длиной в 1 м. | Таким образом, нет оснований подразделять химические соединения на два обособленных класса, а можно говорить лишь о кристаллоидном и коллоидном состоянии вещества в растворе. | Классификация по взаимодействию между частицами дисперсной фазы или степени структурированности системы | Классификация по характеру взаимодействия дисперсной фазы с дисперсионной средой | Для диспергирования твердых тел используют механические, ультразвуковые, химические методы, взрывы. | Диспергирование газов | Методы физической конденсации | Методы химической конденсации | Очистка золей |


Читайте также:
  1. A) Предназначенные для уборки номера распределяются между горничными только начальником вспомогательной службы.
  2. ECCE HOMO. Как становятся самим собой
  3. ECCE HOMO. Как становятся самим собой 1 страница
  4. ECCE HOMO. Как становятся самим собой 2 страница
  5. ECCE HOMO. Как становятся самим собой 3 страница
  6. ECCE HOMO. Как становятся самим собой 4 страница
  7. ECCE HOMO. Как становятся самим собой 5 страница

Количество данных структурных единиц в одной частице может колебаться в самых широких пределах в зависимости от их собственных размеров и массы (например, возможное число атомов лежит в интервале 103 ÷ 109).

Коллоидные системы по своему составу являются гетерогенными и характеризуются наибольшей удельной поверхностью среди других дисперсных систем (табл. 15). В них сильнее всего проявляются поверхностные явления и поэтому эти системы обладают большим запасом внутренней энергии и находятся в неравновесном состоянии.

Вследствие этого золи являются агрегативно- и термодинамически-неустойчивыми. Согласно второму закону термодинамики, они стремятся самопроизвольно снизить величину своей поверхностной энергии за счет уменьшения площади поверхности раздела фаз. Осуществить это можно путем укрупнения частиц дисперсной фазы в результате объединения их друг с другом.

В идеале коллоидные системы должны прийти к такому равновесному состоянию, при котором дисперсная фаза и дисперсионная среда отделены друг от друга минимальной поверхностью раздела и имеют наименьшее значение суммарной внутренней энергии. Его реализация осуществляется тогда, когда все частицы дисперсной фазы соединятся между собой в обособленный от дисперсионной среды слой.

Таким образом, время жизни коллоидных систем ограничено. Для его увеличения в золи необходимо добавлять специальные вещества – стабилизаторы .

Так, если в пробирку с водой добавить некоторое количество растительного масла, то при сильном встряхивании образуется эмульсия, состоящая из мельчайших капель масла равномерно распределенных по всему объему Н2О. Но она очень быстро снова разделяется на 2 слоя – масло и Н2О. Неустойчивость эмульсии объясняется стремлением системы уменьшить поверхность раздела между двумя жидкостями путем самопроизвольного слипания мелких капелек масла в более крупные.

Однако если в данную смесь добавить некоторое количество раствора мыла в Н2О, то при повторном встряхивании образуется устойчивая эмульсия белого цвета. Мыло в данном случае будет играть роль стабилизатора, препятствующего слипанию частичек дисперсной фазы.

Адсорбируясь на поверхности частиц дисперсной фазы, стабилизаторы сообщают им заряд одинакового знака либо оболочку из молекул растворителя (вследствие собственной сольватации). При этом сближение и объединение частиц друг с другом становится невозможным или сильно затруднено. В роли стабилизаторов чаще всего выступают электролиты и полимеры. Более подробно механизм действия стабилизаторов на устойчивость золей мы рассмотрим ниже.

Размеры частичек дисперсной фазы в коллоидных системах как и в истинных растворах, меньше длин волн видимого света. Поэтому золи тоже остаются прозрачными, их частицы не видны в световой микроскоп. Таким образом, молекулярно(ионно)- и коллоидно-дисперсные системы визуально нельзя отличить друг от друга.

Но разница в размерах частиц и длинах световых волн у золей не такая большая по сравнению с истинными растворами, поэтому для них характерно рассеивание света и опалесценция. Эти оптические явления проявляются при боковом наблюдении золя, если в темном помещении с помощью проекционного фонаря направит на раствор узкий пучок света. При прохождении через коллоидную систему он будет образовывать расходящийся конус, называемый конусом Фарадея-Тиндаля (рис. 48б).

При рассматривании данного конуса в ультрамикроскоп в нем видны беспрерывно двигающиеся, переливающиеся всеми цветами радуги, светящиеся частицы, размеры и форму которых в большинстве случаев непосредственно определить невозможно.

Вещество дисперсной фазы в коллоидных системах проходит через большинство бумажных и стеклянных фильтров (кроме ультрафильтров), но не проходит через диализационные мембраны (биологического и искусственного происхождения).

Со временем коллоидные системы стареют, т.е. частицы дисперсной фазы в них объединяются друг с другом и за счет действия силы тяжести постепенно оседают с образованием рыхлого осадка.

В присутствии стабилизаторов этот процесс существенно замедляется. Так в Англии до сих пор сохраняют свою устойчивость коллоидные растворы золота, приготовленные во второй половине XIX века М. Фарадеем.

Грубодисперсные системы по многим своим свойствам схожи с золями, поэтому они тоже являются предметом исследования коллоидной химии. Данные системы являются гетерогенными, хотя и обладают значительно меньшей удельной поверхностью, чем коллоидные растворы (табл. 15). Они имеют избыточную поверхностную энергию, вследствие чего тоже термодинамически неустойчивы и подвержены процессу старения, который протекает гораздо быстрее, чем в золях даже в присутствии стабилизаторов. Это объясняется большей массой частиц дисперсной фазы и более сильным воздействием на них силы тяжести.

Грубодисперсные системы не фильтруются и не проходят через диализационные мембраны.

Частицы дисперсной фазы в них видны в световой микроскоп, их размеры, как правило, больше длин волн видимой части спектра, поэтому они в сильной мере поглощают и отражают свет и, как следствие этого, являются непрозрачными и мутными. Благодаря этому свойству их можно быстро отличить от всех остальных дисперсных систем (рис. 48б).


Дата добавления: 2015-08-02; просмотров: 83 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Классификация дисперсных систем и их общая характеристика| Классификация дисперсных систем по агрегатному состоянию вещества дисперсной фазы и дисперсионной среды

mybiblioteka.su - 2015-2025 год. (0.006 сек.)