Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Влияние на обмен углеводов

Введение | Структура инсулина | Свойства инсулина | Синтез инсулина в клетке | Секреция инсулина | Влияние на пролиферацию клеток. | Регуляция уровня глюкозы в крови | Инсулинотерапия | Бычий инсулин | Гормональная зависимость организма от инсулина |


Читайте также:
  1. Exchange of Impressions. Обмен впечатлениями.
  2. Lt;.р Влияние экологической ситуации на преступность
  3. Quot;БОЛЬШОЙ" — "ЛА СКАЛА" ОБМЕННЫЕ ГАСТРОЛИ
  4. абораторная оценка показателей обмена железа и синтеза гема (биохимические методы исследования).
  5. авление и температура конца впуска и влияние на них конструктивных и эксплуатационных факторов.
  6. Автопостроение базы каналов для обмена данными с внешними контроллерами
  7. Автопостроение базы каналов для обмена данными с другими узлами проекта

1. Действие на обмен глюкозы в печени.

 

Печень - это один из наиболее важных органов тела, запасающих глюкозу. Глюкоза может свободно диффундировать в клетки печени и выходить из них, когда её содержание в крови снижается. В клетках печени глюкоза под влиянием инсулина превращается в гликоген, и её содержание в крови снижается. Один из главных эффектов инсулина состоит в активации фермента глюкокиназы, катализирующей фосфорилирование глюкозы, которая поступает в клетки печени. Инсулин активирует и другие ферменты, в том числе фосфофруктокиназу и гликогенсинтазу, катализирующую полимеризацию фосфорилированной глюкозы в гликоген. Инсулин ингибирует ферменты, расщепляющие гликоген, благодаря чему высокий уровень инсулина способствует консервации гликогена. Инсулин ингибирует глюконеогенез (синтез глюкозы из преимущественно аминокислот) в печени. Это происходит за счёт ингибирования ряда ферментов и за счёт повышения уровня внутриклеточного регулятора фруктозо-2,6-бисфосфата. За счёт быстрого синтеза гликогена и подавления гликогенолиза концентрация глюкозы в крови, повышающаяся после приёма пищи, быстро возвращается к нормальному уровню. В результате устраняется основной стимул секреции инсулина, и его содержание в крови также нормализуется.

Когда организму требуется энергия в промежутках между приёмами пищи, гликоген опять превращается в глюкозу. Концентрация инсулина в крови в этот период очень мала, поэтому фосфорилаза находится в активном состоянии и превращает гликоген в глюкозофосфат, который дефосфорилируется глюкозофосфатазой. Образующаяся при этом глюкоза может свободно выходить из клетки путём диффузии. Таким образом поддерживается постоянный уровень глюкозы в крови между приёмами пищи. При нормальном питании около 60% глюкозы, потребляемой человеком с пищей, временно

запасается в печени, с тем, чтобы быстро высвобождаться за счёт расщепления гликогена.

 

2. Действие на обмен глюкозы в мышечных клетках.

 

При низком содержании инсулина в крови мышечные клетки в норме не проницаемы для глюкозы и всю необходимую энергию получают за счёт окисления жирных кислот. Увеличение концентрации инсулина, вызванное повышением уровня глюкозы в крови после приема пищи, делает мышечные клетки проницаемыми для глюкозы, через увеличение GLUT-4 (GLUT - переносчик для глюкозы, встроенный в мембрану клетки), которая используется затем в качестве источника энергии. Однако при очень высокой мышечной активности (тренировка) мембраны клеток становятся проницаемыми для глюкозы и в отсутствии инсулина. В этом случае потребность работающей мышцы в глюкозе как энергетическом субстрате удовлетворяется даже при базальном уровне инсулина. Детально этот механизм ещё не изучен. Когда мышца находится в неактивном состоянии, в ней сразу после приёма пищи, т. е. при высоких концентрациях инсулина и глюкозы, тоже образуется и сохраняется небольшое количество гликогена. При острой необходимости этот гликоген опять превращается в глюкозу, которая используется мышечными клетками. Как правило, глюкоза не выделяется обратно в кровь и не играет никакой роли в регуляции уровня сахара в крови после приёма пищи.

 

3. Обмен глюкозы в нервных клетках.

Клетки ЦНС свою довольно высокую потребность в энергии почти целиком покрывают за счёт глюкозы, причём её потребление не зависит от инсулина. Он не влияет на проницаемость мембран для глюкозы и не активирует ферментные системы этих клеток. Тот факт, что ЦНС получает необходимую ей энергию только за счёт окисления глюкозы, позволяет понять, почему снижение концентрации последней в крови ниже критического уровня (0,5-0,2 г/л) может привести к гипогликемическому шоку с помутнением сознания или даже комой. Большинство других клеток тела отвечает на инсулин подобно мышечным клеткам. В клетках инсулинчувствительных тканей инсулин стимулирует протекание реакций пентозофосфатного пути, что в конечном итоге способствует пролиферации (росту и размножению) клеток.

 

Рис2. превращение поступившей глюкозы в организм человека под действием инсулина

 


Дата добавления: 2015-08-02; просмотров: 58 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Механизм действия инсулина.| Влияние на жировой обмен

mybiblioteka.su - 2015-2024 год. (0.006 сек.)