Читайте также: |
|
При подготовке к работе повторить материал учебника «Теоретические основы электротехники», автор Лоторейчук Е.А., глава 12 «Расчет линейных электрических цепей синусоидального тока».
В цепи с реальной (обладающей активным сопротивлением) катушкой на рисунке 1 а) уравнения токов и напряжений имеют вид:
i(t)=Imsinωt
uR(t)=UmRsinωt
uL(t)=UmLsin(ωt+900)
Ток i создает падение напряжения на активном сопротивлении проводников катушки uR и индуктивном сопротивлении катушки uL. Активное напряжение совпадает по фазе с током, а индуктивное опережает ток на 900. Мгновенное значение напряжения, приложенного к цепи с реальной катушкой, определяется алгебраической суммой мгновенных напряжений uR и uL. Действующее значение U определяется геометрической суммой векторов действующих значений UR и UL.
Рисунок 1 – RL - цепь
Из векторной диаграммы на рисунке 1 б) видно, что напряжение на зажимах цепи опережает ток на угол φ. Мгновенное значение этого напряжения:
u (t)=Umsin(ωt+φ),
где:
φ – международное обозначение угла сдвига фаз между током и напряжением для любой цепи переменного тока.
Закон Ома для цепи с реальной катушкой:
где:
- полное сопротивление RL - цепи.
В цепи с конденсатором на рисунке 2 а) уравнения токов и напряжений имеют вид:
i(t)=Imsinωt
uR(t)=UmRsinωt
uс(t)=Umсsin(ωt-900)
Ток i создает падение напряжения на активном сопротивлении uR и емкостном сопротивлении uс. Активное напряжение совпадает по фазе с током, а емкостное отстает от тока на 900. Мгновенное значение напряжения, приложенного к цепи с реальной катушкой, определяется алгебраической суммой мгновенных напряжений uR и uL. Действующее значение U определяется геометрической суммой векторов действующих значений UR и UL.
Из векторной диаграммы на рисунке 2 б) видно, что напряжение на зажимах цепи отстает от тока на угол φ. Мгновенное значение этого напряжения:
u (t)=Umsin(ωt-φ),
Рисунок 2 – RС - цепь
Закон Ома для цепи с емкостью:
где
- полное сопротивление RC - цепи.
Резонанс напряжений в RLC – цепи возникает, если XL = Xc, тогда полное сопротивление цепи становится минимальным, а ток увеличивается.
Рисунок 3 – RLC - цепь
Рисунок 4 – Векторные диаграммы RLC – цепи
а) XL > Xc –индуктивный характер цепи;
б) XL < Xc–емкостный характер цепи;
в) XL = Xc – резонанс напряжений.
Мгновенное значение напряжения:
u (t)=Umsin(ωt±φ),
Закон Ома для RLC- цепи:
где
- полное сопротивление RLС - цепи.
Полная мощность цепи переменного тока, ВА
S = U·I
Активная мощность цепи переменного тока, Вт
P = S·cosφ= U·I ·cosφ
Коэффициент мощности
Реактивная мощность
Q = S·sinφ= U·I ·sinφ
Пример
Закон изменения тока (t)
Определить полное сопротивление цепи; закон изменения приложенного напряжения; полную, активную, реактивную мощность. Построить векторную диаграмму. Рассчитать емкость конденсатора и индуктивность катушки. Определить характер цепи.
R1 = 6 Ом; R2= 5 Ом; XL = 16 Ом; Xc = 9 Ом;
Решение
Полное сопротивление цепи
Амплитудное значение тока
Действующее значение тока
Действующее значение напряжения
Амплитудное значение напряжения
Угол сдвига фаз между током и напряжением
Закон изменения приложенного напряжения
(t)
Характер цепи – индуктивный, т.к.знак + φ.
Напряжение на участках цепи
Полная мощность цепи переменного тока, ВА
S = U·I =600·46=27600 ВА
Активная мощность цепи переменного тока, Вт
P = S·cosφ= 27600 ·cos 32,50=23277 Вт
Коэффициент мощности
Реактивная мощность
Q = S·sinφ= 27600 ·sin32,50=14829 вар
Емкость конденсатора и индуктивность катушки
Резонансная частота
Ток в цепи при резонансе
Условие резонанса XL = Xc. По условию задачи XL =16 Ом, а Xc=9 Ом. Этому Xc соответствует емкость С=3,5·10-4 Ф. Для выполнения условия резонанса емкостное сопротивление надо увеличить до16 Ом. Тогда емкость будет уменьшена до С=2·10-4 Ф.
Рисунок 5- Векторная диаграмма
Задание
Для своего варианта рассчитать параметры однофазной цепи синусоидального тока.
Таблица 1 – Данные для расчета
вариант | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
I, А | ||||||||||||||
f, Гц | ||||||||||||||
φi, град | -30 | -28 | -60 | -35 | -64 | -52 | -50 | |||||||
R1, Ом | - | - | - | |||||||||||
R2, Ом | - | - | - | |||||||||||
XL1,Ом | - | - | ||||||||||||
XL2,Ом | - | - | - | - | ||||||||||
Xc2,Ом | - | |||||||||||||
Xc2,Ом | - |
Требуется определить:
1. закон изменения тока;
2. полное сопротивление цепи;
3. закон изменения приложенного напряжения;
4. характер цепи;
5. напряжение на участках цепи;
6. полную, активную, реактивную мощность;
7. построить векторную диаграмму;
8. емкость конденсатора и индуктивность катушки;
9. параметры резонанса напряжений – частоту, емкость, индуктивность, ток.
Контрольные вопросы
1. Как распределяется потребляемая мощность в RLC –цепи?__________________________
_____________________________________________________________________________
2. Как определить угловую частоту по закону изменения тока?_________________________
3. От чего зависит величина индуктивности?________________________________________
4. Как меняется емкостное сопротивление при увеличении частоты тока?________________
5. Чем опасен резонанс напряжений в цепи?
Практическая работа №14
ДЕЙСТВИЯ НАД КОМПЛЕКСНЫМИ ЧИСЛАМИ
Цели: 1. Повторить теоретический материал.
2. Освоить расчет электрических цепей переменного тока символическим методом.
3. Построить векторную диаграмму.
Необходимо знать: комплексная плоскость, мнимая, действительная часть, тригонометрическая и показательная форма.
Необходимо уметь: определять: характер цепи.
Оборудование: калькулятор с комплексными числами, конспект лекций, учебник
Порядок работы:
Дата добавления: 2015-08-10; просмотров: 45 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Решение | | | Теоретические сведения |