Читайте также:
|
|
Метаморфические горные породы
— горные породы, образованные в толще земной коры в результате изменения (метаморфизма) осадочных и магматических горных пород вследствие изменения физико-химических условий. Благодаря движениям земной коры, осадочные горные породы и магматические горные породы подвергаются воздействию высокой температуры, большого давления и различных газовых и водных растворов, при этом они начинают изменяться.
Так как исходным материалом метаморфических горных пород являются осадочные и магматические породы, их формы залегания должны совпадать с формами залегания этих пород. Так на основе осадочных пород сохраняется пластовая форма залегания, а на основе магматических — формаинтрузий или покровов. Этим иногда пользуются, чтобы определить их происхождение. Так, если метаморфическая порода происходит от осадочной, ей дают приставку пара- (например, парагнейсы), а если она образовалась за счёт магматической породы, то ставится приставка орто- (например, ортогнейсы).
Состав метаморфических пород
Химический состав метаморфических горных пород разнообразен и зависит в первую очередь от состава исходных. Однако состав может отличаться от состава исходных пород, так как в процессе метаморфизма происходят изменения под влиянием привносимых водными растворами веществ иметасоматических процессов.
Минеральный состав метаморфических пород также разнообразен, они могут состоять из одного минерала, например кварца (кварцит) или кальцита (мрамор), или из многих сложных силикатов. Главные породообразующие минералы представлены кварцем, полевыми шпатами, слюдами,пироксенами и амфиболами. Наряду с ними присутствуют типично метаморфические минералы:гранаты, андалузит, дистен, силлиманит, кордиерит, скаполит и некоторые другие. Характерны, особенно для слабометаморфизованных пород тальк, хлориты, актинолит, эпидот, цоизит, карбонаты.
Физико — химические условия образования метаморфических пород, определённые методамигеобаротермометрии весьма высокие. Они колеблются от 100—300 °C до 1000—1500 °C и от первых десятков баров до 20—30 кбаров Структуры метаморфических пород[править | править исходный текст]
Понятие «структура» не имеет строгого определения и носит интуитивный характер. Согласно практике геологических исследований «структура» больше характеризует размерные (крупно-, средне- или мелкообломочные) параметры слагающих породу зёрен.
Структуры метаморфических пород возникают в процессе перекристаллизации в твёрдом состоянии, или кристаллобластеза. Такие структуры называют кристаллобластовыми
Температуры образования метаморфических пород всегда интересовали исследователей, поскольку не позволяли понимать условия, а отсюда и историю механизма образовани этих пород. Ранее до разработки основных методов определения температур образования метаморфических минералов главным методом решения задачи были экспериментальные исследования, основанные на анализе различных диаграмм плавкости. На этих диаграммах устанавливались основные интервалы температур и давлений, в пределах которых выявлялась устойчивость тех или иных минеральных ассоциаций. Далее результаты экспериментов практически механически переносились на природные объекты. Параметры образования конкретных минералов не изучались, что является существенным недостатком подобных исследований.
Атмосфера
Атмосфе́ра (от. др.-греч. ἀτμός — пар и σφαῖρα — шар) — газоваяоболочка, окружающая планету Земля, одна из геосфер. Внутренняя её поверхность покрывает гидросферу и частично земную кору, внешняя граничит с околоземной частью космического пространства.
Химический состав[править | править исходный текст]
Атмосфера Земли возникла в результате выделения газов при вулканических извержениях. С появлением океанов и биосферы она формировалась и за счёт газообмена с водой, растениями, животными и продуктами их разложения в почвах и болотах.
Состав сухого воздуха
В настоящее время атмосфера Земли состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения).
Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H2O) и углекислого газа (CO2).
Тропосфера[править | править исходный текст]
Основная статья: Тропосфера
Её верхняя граница находится на высоте 8—10 км в полярных, 10—12 км в умеренных и 16—18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны иантициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м
Тропопауза[править | править исходный текст]
Основная статья: Тропопауза
Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.
Стратосфера[править | править исходный текст]
Основная статья: Стратосфера
Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.
Стратопауза[править | править исходный текст]
Основная статья: Стратопауза
Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).
Мезосфера[править | править исходный текст]
Основная статья: Мезосфера
Атмосфера Земли
Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25—0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.
Мезопауза[править | править исходный текст]
Основная статья: Мезопауза
Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около —90 °C).
Линия Кармана[править | править исходный текст]
Основная статья: Линия Кармана
Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. В соответствии с определением ФАИ, линия Кармана находится на высоте 100 км над уровнем моря.
Термосфера[править | править исходный текст]
Основная статья: Термосфера
Верхний предел — около 800 км. Температура растёт до высот 200—300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») — основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца. В периоды низкой активности — например, в 2008—2009 гг — происходит заметное уменьшение размеров этого слоя[6].
Термопауза[править | править исходный текст]
Основная статья: Термопауза
Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.
Экзосфера (сфера рассеяния)[править | править исходный текст]
Основная статья: Экзосфера
Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежён, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).
До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере.
Другие свойства атмосферы и воздействие на человеческий организм[править | править исходный текст]
Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.
Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.
В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давлениекислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа — 40 мм рт. ст., а паров воды — 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным — около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.
На высоте около 19—20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 15—19 км. На высотах выше 100 км атмосфера лишена и другого замечательного свойства — способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, — с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение.
Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад, катархей)[ источник не указан 799 дней ]. На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком, водяным паром). Так образовалась вторичная атмосфера (около трех миллиардов лет[ источник не указан 724 дня ] до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:
· утечка легких газов (водорода и гелия) в межпланетное пространство;
· химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.
Солнечная радиация
Со́лнечная радиа́ция — электромагнитное и корпускулярное излучение Солнца. Следует отметить, что данный термин является калькой с англ. Solar radiation («Солнечное излучение»), и в данном случае не означает радиацию в «бытовом» смысле этого слова (ионизирующее излучение).
Электромагнитная радиация распространяется в виде электромагнитных волн со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямой и рассеянной радиации. Солнечная радиация - главный источник энергии для всех физико-географических процессов, происходящих на земной поверхности и в атмосфере. Солнечная радиация обычно измеряется по ее тепловому действию и выражается в калориях на единицу поверхности за единицу времени. Всего Земля получает от Солнца менее одной двухмиллиардной его излучения.
Суммарная солнечная радиация - вся прямая и рассеянная солнечная радиация, поступающая на земную поверхность. Суммарная солнечная радиация характеризуется интенсивностью. При безоблачном небе суммарная солнечная радиация имеет максимальное значение около полудня, а в течение года - летом.
Рассеянная солнечная радиация - часть солнечного излучения (около 25%), претерпевшая рассеяние в атмосфере - преобразованная в атмосфере из прямой солнечной радиации в радиацию, идущую по всем направлениям. Причиной рассеяния солнечных лучей является неоднородность воздуха. Радиация распространяется от рассеивающих частиц воздуха так, как если бы эти частицы сами были источником излучения. Рассеянной солнечной радиацией объясняется голубой цвет неба.
Прямая солнечная радиация - радиация, приходящая к земной поверхности непосредственно от Солнца. На земную поверхность солнечная радиация приходит пучком практически параллельных лучей и характеризуется интенсивностью радиации.
Отраженная солнечная радиация - часть суммарной солнечной радиации, которая не поглощается земной поверхностью, а отражается от нее. Зависит от характера поверхности отражения.
Дата добавления: 2015-08-10; просмотров: 85 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Частный интерес будет подчинен интересу общему. | | | Суточный и годовой ход температуры воздуха |