Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

ГЭУ двойного рода тока

Читайте также:
  1. IV. Асимиляции. Случаи двойного морфологического значения одной функции
  2. Билет №28. ВВП и методы его исчисления по расходам и доходам и по добавленной стоимости. Проблемы двойного счета.
  3. Выпуск двойного класса акций
  4. Вычисление двойного интеграла в декартовых координатах.
  5. Вычисление двойного интеграла. Двукратный (повторный) интеграл.
  6. Геометрические приложения двойного интеграла.

Гребными установками двойного рода тока называются такие установки, в которых в качестве источников электроэнергии используются синхронные генераторы переменного тока, а в качестве гребных электродвигателей – электродвигатели постоянного тока.

Появление таких установок стало возможным благодаря развитию полупроводниковой техники, на базе которой были созданы выпрямители двух типов:

- неуправляемые, выходное напряжение которых не регулируется;

- управляемые с регулируемым выходным напряжением.

Появление мощных, на сотни кВт, выпрямителей позволило объединить вы­сокие маневренные качества ГЭУ постоянного тока с достоинст­вами ГЭУ переменного тока (возможность применения высокообо­ротных первичных двигателей, малые массогабаритные показа­тели).

Гребные электроустановки двойного рода тока превосходят по своим характеристикам ГЭУ как постоянного, так и перемен­ного тока.

ГЭУ двойного рода тока имеют лучшие массо-габаритные показатели, чем ГЭУ постоянного тока, из-за приме­нения дизелей с повышенной частотой вращения и турбин без редукторной передачи.

Благодаря отсутствию коллектора синхронные генераторы легче, чем генераторы постоянного тока. Так, синхронный гене­ратор мощностью 1000 кВт при частоте вращения 1000 об/мин имеет относительную массу 6,3 кг/кВт при относительной массе 9 кг/кВт генератора постоянного тока той же мощности и частоты вращения.

Применение ВРШ для ГЭД имеет следующие преимущества:

- постоянство частоты вращения двигателей генераторов;

- постоянство частоты вращения гребного электродвигателя, а значит, гребного винта.

Регулирование скорости винта осуществляется изменением угла поворота лопастей на ВРШ, а реверс – изменением направления поворота лопастей относительно нулевого положения.

Постоянство частоты вращения первичных двигателей гребных электроустановок обусловливает возможность отбора мощности от шин системы электродвижения для общесудовых потребителей (ОСП), а также более рационального использования установлен­ной мощности судовой электростанции.

В зависимости от вида выпрямительного устройства в главной цепи возможны два типа ГЭУ двойного рода тока:

- с неуправляе­мыми (на диодах) выпрямителями (статическими преобразователями);

- с управляемыми (на тиристорах) выпрямителями (статическими преобразовтелями).

Схемы главного тока ГЭУ двойного рода тока аналогичны схе­мам ГЭУ постоянного тока, но предельная мощность синхронных генераторов не ограничена и число их определяется только сооб­ражениями надежности и живучести.

Статические преобразователи выполняются по шести- или двенадцатифазным схемам выпрямления. Кроме того, в схемах с управляемыми выпрямителями включаются токоограничивающие и фильтрующие дроссели.

Выпрямительные мосты на стороне постоянного тока могут быть соединены последовательно или параллельно. Выпрямитель­ные мосты включаются на разные, сдвинутые на 30 эл. град., обмотки сдвоенных генераторов или через трансформаторы для предотвращения коротких замыканий через последовательно со­единенные вентили.

Структурная схема гребной электроустановки двойного рода тока с неуправляемым выпрямителем в виде одного из возможных вариантов представлена на рис. 8.6.

 

Рисунок 8.6. Структурная схема ГЭУ двойного рода тока

 

Синхронный генератор СГ, питающий гребной электродвига­тель постоянного тока ГЭД независимого возбуждения, вращается первичным двигателем ПД с постоянной частотой ω.

Гребной элек­тродвигатель ГЭД постоянного тока подключается к синхрон­ному генератору через неуправляемый выпрямитель НВ.

Регули­рование выпрямленного напряжения U осуществляется изме­нением тока в обмотке возбуждения синхронного генератора ОВГ, при помощи тиристорного возбудителя генератора ТВГ. Последний управляется регулятором возбуждения УВГ в зависимости от сигнала с пульта управления ПУ, режима главной цепи (тока I и напря­жения U) и уставок максимального тока I и эталонного напряжения U .

В схеме возбуждения ГЭД применяется реверсив­ный тиристорный возбудитель ТВД, управляемый отдельным регулятором УВД. Этот возбудитель предназначен для реверса ГЭД.

Синхронный генератор, неуправляемый вы­прямитель и гребной электродвигатель образуют систему, ана­логичную по структуре ГЭУ постоянного тока.

Однако механиче­ские характеристики такой схемы ГЭУ менее жестки, чем у ГЭУ постоянного тока, благодаря большим внутренним сопротивле­ниям СГ и НВ.

Пуск гребного электродвигателя осуществляетс.подачей тока одновременно в обмотки возбуждения СГ и ГЭД. При этом пус­ковые токи I меньше, чем у ГЭУ постоянного тока.

Необходимая величина электромагнитного момента ГЭД при заклинивании винта обеспечивается формой внешней характеристики син­хронного генератора, выпрямителя и жесткой обратной связью по току (кI).

Режим постоянства мощности ГЭУ в широком диа­пазоне частот вращения ГЭД автоматически обеспечивается двумя жесткими отрицательными обратными связями (по току I и на­пряжению U), которые вводятся в регуляторы возбуждения.

Реверс ГЭД производится изменением направления тока в об­мотке возбуждения двигателя ОВД, которое осуществляется ре­версивным тиристорным возбудителем ТВД.

Именно ГЭУ двойного рода тока с неуправляемыми выпрями­телями в цепи якорей ГЭД постоянного тока была реализована на ледоколе-атомоходе «Арктика», что обеспечило:

- высокую маневренность (широкий диапазон регулирова­ния частоты ГЭД и достаточную быстроту ее изменения) и простоту управления ГЭУ;

- возможность создания турбогенераторных агрегатов без редукторов и удобство их компоновки в машинном отделении;

- снижение шумности и вибрации элементов ГЭУ;

- повышение КПД установки;

- наибольшую простоту исполнения и надежность работы ГЭД и их питания.

 


Дата добавления: 2015-07-25; просмотров: 113 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
ГЭУ переменного тока| Техническая эксплуатация ГЭУ

mybiblioteka.su - 2015-2024 год. (0.007 сек.)