Читайте также: |
|
Расчет изгибаемых элементов по прогибам производят из условия
f ≤ fult, | (2.7) |
где f - прогиб элемента от действия внешней нагрузки;
fult - значение предельно допустимого прогиба.
Прогиб плиты ограничивается эстетическими требованиями.
Для элементов постоянного сечения, работающих как свободно опертые или консольные балки, прогиб допускается определять, вычисляя кривизну только для наиболее напряженного сечения и принимая для остальных сечений кривизны изменяющимися пропорционально значениям изгибающего момента, т.е. по формуле
(2.8) |
где - полная кривизна в сечении с наибольшим изгибающим моментом;
S - коэффициент, принимаемый по прил.14.
Полную кривизну изгибаемых элементов определяют:
а) для участков без трещин в растянутой зоне по формуле
(2.9) |
где и - кривизны соответственно от непродолжительного действия кратковременных нагрузок и от продолжительного действия постоянных и длительных нагрузок;
- кривизна от непродолжительного действия усилия предварительного обжатия Р (т.е. при действии M = Peop).
Кривизну элемента на участке без трещин определяют по формуле
(2.10) |
где М - изгибающий момент от внешней нагрузки или момент усилия предварительного обжатия относительно оси, проходящей через центр тяжести приведенного сечения;
Ired - момент инерции приведенного сечения относительно его центра тяжести, определяемый как для сплошного тела по общим правилам сопротивления упругих материалов с учетом всей площади бетона и площадей сечения арматуры с коэффициентом приведения арматуры к бетону, равным а=Es /Eb 1; Eb 1- модуль деформации сжатого бетона, принимаемый равным:
- при непродолжительном действии нагрузки
Eb 1= 0,85 Eb; | (2.11) |
- при продолжительном действии нагрузки
(2.12) |
б) для участков с трещинами в растянутой зоне по формуле
(2.13) |
где - кривизна от непродолжительного действия всех нагрузок, на которые производят расчет по деформациям;
- кривизна от непродолжительного действия постоянных и длительных нагрузок;
- кривизна от продолжительного действия постоянных и длительных нагрузок.
Кроме того, в формулах (2.9) и (2.13) может быть учтена кривизна , обусловленная остаточным выгибом элемента вследствие усадки и ползучести бетона в стадии изготовления от усилия предварительного обжатия Р (1)и собственного веса элемента. Значение определяется по формуле
(2.14) |
где σsb и σ'sb - значения, численно равные сумме потерь предварительного напряжения арматуры от усадки и ползучести бетона соответственно для арматуры растянутой зоны и для арматуры, условно расположенной на уровне крайнего сжатого волокна бетона.
Для сечений при h'f ≤ 0,3 ho и a's < 0,2 h 0 кривизну допускается определять по формуле
(2.15) |
где φс - коэффициент, определяемый по прил. 13 в зависимости от φf, μas 2, es / h 0
Пример расчета. Определяем кривизну в середине пролета от продолжительного действия постоянных и длительных нагрузок, т.е. при М = Ml = 107,05 кН·м.
Для этих нагрузок имеем: , φf = 0,95,
При продолжительном действии нагрузки и нормальной влажности имеем εb 1, red =28×10-4 при влажности окружающей среды 70 ≥W ≥ 40 %.
Тогда
По табл. П13 приложения при φf = 0,95, es/h 0 =1,35 и μαs 2 =0,36 находим φc =0,61. Тогда кривизна равна
Определим кривизну, обусловленную остаточным выгибом при σsb =125,16 МПа.
1/мм
σsb – численно равны сумме потерь напряжений от усадки и ползучести бетона σsb = 40+85,16=125,16 МПа.
Полная кривизна в середине пролета от постоянных и длительных нагрузок равна
Прогиб плиты определяем, принимая S =5/48:
Согласно СП 20.13330.2011 «Нагрузки и воздействия» поз.2 при l = 5,84 м предельно допустимый из эстетических требований прогиб равен fult = 5840 / 200 =29,2 мм, что превышает вычисленное значение прогиба.
Дата добавления: 2015-07-20; просмотров: 97 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Расчет по образованию трещин нормальных к продольной оси | | | Конструкция типовой ребристой плиты перекрытия |