Читайте также:
|
|
При движении жидкости в потоке появляются силы трения, направленные против движения, и на работу по их преодолению затрачивается часть энергии. Если энергия потока меньше, чем работа сил трения, то поток не сможет преодолеть работу этих сил и остановится. Без учета сил трения невозможно рассчитать точные количественные характеристики потока.
Гидравлические потери энергии подразделяются на две группы.
1. Потери энергии по длине потока. Они наблюдаются в трубах и каналах постоянного сечения и увеличиваются пропорционально длине потока, так как при этом увеличивается поверхность трения.
2. Потери энергии в местных гидравлических сопротивлениях, возникающие при деформации потока.
Как правило, деформация потока обусловлена установкой трубопроводной арматуры (краны, вентили, задвижки и др.), а также внезапными сужениями, расширениями и поворотами потока.
Местные потери напора hм определяются по формуле Вейсбаха:
hм = x×J2/2g, | (20) |
где x - безразмерный коэффициент, зависит от вида и конструктивного выполнения местного сопротивления, приводится в справочной литературе (Приложение 9);
J - скорость движения жидкости в трубопроводе, где установлено местное сопротивление.
Потери энергии на единицу веса (потери напора) по длине потока определяются по формуле Дарси-Вейсбаха:
, | (21) |
где l - длина потока, J - средняя скорость в сечении потока, d г - гидравлический диаметр, для круглых труб он равен диаметру трубы.
В формуле (26) величина l называется коэффициентом гидравлического трения. Этот коэффициент зависит от режима движения жидкости (числа Re) и состояния поверхности трубопровода.
Существует два режима движения жидкостей - ламинарный и турбулентный.
Граница между ламинарным и турбулентным режимом движения определяется по величине критического значения числа Reкр. Это число зависит от формы сечения канала и от рода жидкости.
Reкр =2300 | - для канала круглого сечения |
Если расчетное значение числа Re меньше критического (Re < Reкр) -имеет место ламинарный режим движения, в противном случае - турбулентный.
При ламинарном режиме коэффициент гидравлического трения определяется следующим образом:
l = 64 / Re | - для канала круглого сечения | (22) |
Здесь Re - критерий Рейнольдса.
Re = J×d г ×r /h, | (23) |
где J - средняя скорость движения в сечении потока, d г - гидравлический диаметр, r - плотность жидкости, h - динамический коэффициент вязкости жидкости.
Величины r и h характеризуют физические свойства жидкости. Они зависят от рода жидкости и температуры и приводятся в справочной литературе. Часто в справочниках вместо динамического коэффициента вязкости h приводится кинематический коэффициент вязкости n = h / r.
В этом случае число Re можно определять так:
Re = J×d /n. | (24) |
При турбулентном режиме (Re > Reкр) различают три зоны сопротивления:
1. Зона гидравлически гладких труб (Re кр<Re £ 10d/Dэ). Здесь коэффициент гидравлического трения зависит только от числа Re и определяется по формуле Блазиуса:
l = 0,316 / Re0,25 |
2. Зона шероховатых труб (10d/D <Re £ 500d/Dэ). Здесь коэффициент гидравлического трения зависит от числа Re и от относительной шероховатостии определяется по формуле Альтшуля:
l = 0,11 ( 68 /Re +Dэ/d) 0,25 | (25) |
3. Зона абсолютно шероховатых труб или квадратичная зона
(Re > 500d/Dэ). Здесь коэффициент гидравлического трения зависит только от относительной шероховатостии определяется по формуле Шифринсона:
l = 0,11 (Dэ/d) 0,25. |
С незначительной погрешностью формула Альтшуля ( 25 ) может использоваться как универсальная для всей турбулентной области течения.
Во всех формулах для турбулентного режима Dэ - абсолютная эквивалентная шероховатость, то есть такая высота равномерно-зернистой шероховатости, при которой в квадратичной зоне сопротивления потери напора равны потерям напора для данной естественной шероховатости трубы.
Значение Dэ зависит от материала поверхности трубопровода и от способа его изготовления, приводится в справочниках.
Дата добавления: 2015-07-20; просмотров: 60 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Гидравлическая сеть | | | Расчет всасывающей линии насосной установки |