Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Система 4-х батарей Теслы

Читайте также:
  1. A. Лімбічна система
  2. C) система нормативных правовых актов регулирования семейных отношений.
  3. DSM — система классификации Американской психиатрической ассоциации
  4. I. Общая характеристика направленности и система мотивации человека
  5. I. Парижская валютная система (1816 - 1914 гг.).
  6. I. Психология управления как наука. Процесс и система управления
  7. I. ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА

В школе учеников учат тому, что если лампочку подключить к батарее, ток течет по батарее, через лампочку, и снова в батарею. Этот ток заставляет лампочку светиться, и, через некоторое время, батарея разряжается и не в состоянии более зажечь лампочку. Это абсолютно правильно.

Тем не менее, подобное учение дает неверное представление. Оно подразумевает, что "работа", выполняемая в лампочке, расходует электричество из батареи, и что батарея некоторым образом имеет "запас" электричества, подобно песку в песочных часах, который, высыпавшись, будет не в силах зажечь лампочку. Любопытно, те же самые учителя при этом демонстрируют правильную диаграмму электрической цепи, нечто наподобие этого:

Обратите внимание, ток силой 1 Ампер, вытекающий из лампочки, точно такой же, как и ток силой 1 Ампер, втекающий в нее. Из лампы вытекает такое же количество тока, что и втекает в нее. Следовательно, какое количество тока "расходуется" на выполнение работы в лампочке? Ответ: никакое. Энергия никогда не исчезает, худшее, что с ней может случиться - это преобразование из одного вида в другой.

Почему же тогда батарея не может поддерживать свечение лампочки вечно? Ответ находится в особенности работы батареи. Если ток течет в одном направлении, батарея заряжается, если в другом - разряжается:

Разряд батареи не имеет ничего общего с течением тока через лампочку, батарея разрядится не менее успешно, если лампочку исключить из электрической цепи. Полезная "работа" по созданию света благодаря течению тока через батарейку не "расходует" никакого тока, и, что более важно, не "расходует" никакой энергии. Энергию нельзя "расходовать" - ее можно преобразовывать из одной формы в другую. Это трудно понять, поскольку нас приучили думать, что мы должны постоянно покупать энергию у генерирующих компаний чтобы питать электроприборы. Предположение, что мы как бы покупаем энергию, которая в дальнейшем "расходуется" электроприборами, и мы должны покупать снова и снова, чтобы приборы продолжали работать - ошибочно. Мы же принимаем его потому, что нас к этому приучили. На самом деле это не так.

Ток, протекающий через лампочку может быть направлен на заряд другой батареи. Т.е. один и тот же ток может одновременно вызывать свечение лампочки и заряжать вторую батарею:

На этом рисунке, цепь питается батареей 1, как и прежде, но при этом направлен на заряд второй батареи. Безусловно, первая батарея разряжается, как и прежде, но позитив в том, что вторая батарея постоянно заряжается. В конце мы меняем батареи местами:

теперь, вновь заряженная батарея 2 поддерживает свечение лампочки и перезаряжает батарею 1. Кажется невозможным? Это не так. Никола Тесла демонстрировал подобную систему из 4-х батарей, в которой он применил 4 идентичные батареи в аналогичной схеме:

Благодаря использованию 12-Вольтовых батарей, показанных на рисунке, напряжение на лампочке = те же 12В, что и при использовании 1 батареи, как на первом рисунке, поскольку батареи 1 и 2 включены последовательно (напряжение удваивается в этом случае), в то время как батареи 3 и 4 включены параллельно (напряжение при этом не меняется, т.е. = 12В). Тесла в своей схеме менял местами включение батарей 1-2 с 3-4. В то же время он предпочел делать это несколько иначе, меняя способ подключения (параллель / последовательно) несколько сотен раз в секунду.

Есть еще один важный фактор, участвующий в зарядных цепях, применимый к обычным кислотно-свинцовым батареям, имеющий непосредственное отношение к данному материалу. Процесс зарядки в подобной коммутируемой цепи происходит посредством электронов, бегущих по проводам-проводникам и в батарею. Основной ток внутри батареи осуществляется заряженными ионами в свинцовых пластинах батареи. Эти ионы в сотни тысяч раз "тяжелее" электронов. Что, в принципе, несущественно, как только ионы приходят в движение, но в начальную долю секунды, прежде чем ионы придут в движение, "входящие" электроны скапливаются как машины в пробке. Эта толпа электронов вызывает повышение напряжения на (негативном / противоположном) терминале батареи, намного выше номинального напряжения батареи, и таким образом, зарядка начинается с высоковольтного импульса большого тока, направленного в батарею.

Обычно это не заметно при использовании стандартного зарядного устройства, питаемого от сети, поскольку включение происходит лишь единожды за все время зарядки. В Тесла-свиче же, равно как и в схеме Бедини, это не так. В схеме используется разница в инерции электронов и ионов свинца, и используется многократно, с огромной выгодой. Техника данной схемы состоит в постоянном использовании очень коротких импульсов. Если импульсы достаточно короткие, напряжение и ток, текущий во вторую батарею намного превышают значения, очевидные при поверхностном взгляде на схему. Магия здесь ни при чем, это происходит благодаря известным особенностям материалов, используемых в схеме.

Незнакомому с подобными системами человеку схемы Бедини могут на первый взгляд показаться корявыми, собранными на скорую руку. Трудно себе представить нечто более далекое от истины, чем подобное суждение. Джон зачастую применяет механическую коммутацию, поскольку она обеспечивает резкое включение/выключение. Джон прекрасно разбирается в своей схематике и точно знает, что нужно делать.

Корпорация Electrodyne тестировала схему Тесла с 4-мя батареями на протяжении 3-х лет. Они обнаружили, что в конце тестирования батареи не показали признаков какого-либо чрезвычайного износа. Использовались обычные кислотно-свинцовые батареи. Система питала освещение, обогреватели, телевизоры, небольшие моторы, а также электромотор мощностью 30 л.с. Если батареи разряжались до низкого значения, а потом подключались с нагрузкой, (полная) перезарядка батарей происходила менее чем за 1 минуту. Оставленные без вмешательства, каждая из батарей приобретала заряд до 36 Вольт. Чтобы предотвратить перезаряд, была разработана контрольная схема. Применялись механические коммутаторы, и пришли к выводу, что при частоте коммутации менее 100 Гц схема неэфективна, а свыше 800 Гц может быть опасна.

При этом они не упоминают, почему считают более высокие частоты коммутации опасными. Если мы разберемся, что именно происходит (в схеме), возможно, мы получим ответ. Процесс заряда выглядит следующим образом:

В момент "А" выключатель замкнут, соединяя источник напряжения (батарею, заряженный конденсатор, прочее) с кислотно-свинцовой батареей. Электроны начинают бежать снаружи соединяющего провода. Будучи очень легкими, и не встречая значительного сопротивления, они движутся весьма быстро (внутри провода электроны перемещаются всего на несколько дюймов в час, поскольку движение сквозь проводник затруднено). Все идет хорошо до момента "В", когда электроны достигают свинцовых пластин внутри батареи. Здесь они сталкиваются с проблемой, поскольку течение тока по пластинам осуществляется ионами свинца. Последние отлично справляются со своей задачей, но им из-за большого веса требуется доля секунды чтобы прийти в движение. Эта доля секунды очень важна, поскольку именно она открывает дверь свободной энергии. В эту долю секунды, электроны скапливаются, поскольку продолжают прибывать по соединяющему проводу с огромной скоростью. Следовательно, в момент "С" их скапливается значительное количество.

Скопление большого количества электронов аналогично внезапному подключению источника значительно бόльшего напряжения, способного давать куда больший ток. Эта ситуация весьма непродолжительна, но имеет три очень важных следствия.

Во-первых, в момент "D" в батарею заходит ток, намного превышающий ожидаемое значение от источника.

Во-вторых, (начало псевдонаучной абракадабры) этот эффект изменяет состояние энергетического поля нулевой точки (пространственно-временной континуум), в котором находится электрическая цепь, заставляя бόльшую энергию из окружающего пространства вливаться в контур. Это в некотором роде подобно тому, как солнечный свет вызывает ток в солнечных панелях, с той разницей, что вместо видимого света, поток энергии для нас невидим (конец псевдонаучной абракадабры).

В-третьих, избыточная энергия попадает в батарею, заряжая ее сильнее, чем можно было бы ожидать, и в то же время, часть избыточной энергии течет в нагрузку, выполняя при этом полезную работу. Под нагрузкой мы понимаем лампу, мотор, инвертер, насос, дрель, что угодно.

Итак, избыточная энергия собирается из окружающей среды и используется для выполнения полезной работы и одновременного заряда батарей. Очевидно, нарушается известный афоризм, что нельзя одновременно "и рыбку съесть, и...", поскольку происходит именно это. Вместо того, чтобы разряжаться, питая нагрузку, батарея заряжается, питая нагрузку! Вот почему данная схема позволяет вращать мотор даже от разряженной батареи. Это становится возможным благодаря тому, что пластины батареи состоят из свинца, который создает "электронную пробку" (пробку из электронов), вынуждая окружающую среду заряжать батарею и одновременно питать нагрузку. Вот откуда "магический фокус" с питанием мотора от разряженной батареи. В принципе, чем более батарея разряжена, тем быстрее она заряжается, поскольку окружающая среда реагирует и предоставляет бόльшую энергию в разряженную батарею. окружающая среда является источником неограниченной мощности, доступной к использованию. Джон Бедини, являющийся несомненным специалистом в данной области, ставил эксперименты, в которых моторы вращались постоянно в течение трех и более (!) лет, при этом батареи совершенно не разряжались, несмотря на выполнение моторами полезной работы. Скажете, замечательная батарея? Нет, замечательная окружающая среда!

Для того, чтобы обеспечить необходимое скопление электронов, закрытие выключателя должно быть очень резким и эффективным. Для этих целей подходит тиристор, или "SCR", поскольку, включившись, он переключается резко и полностью. До сих пор звучит неплохо? Это лишь начало. Я предполагаю, что Тесла-свич из 4-х батарей основан на этом принципе, и работал в диапазоне частот 100 - 800 Гц.

Данную схему можно улучшить еще больше, резко отключая ток электронов от исходного источника напряжения, до того, как процесс скопления электронов завершится (ЭДС самоиндукции? - прим.перев.), что вызывает внезапное (очень краткое) еще большее увеличение дополнительной мощности, повышающее напряжение еще больше, что, в свою очередь, позволяет увеличить отдачу полезной мощности в нагрузку и усоврить заряд батареи.

Еще большего эффекта можно добиться, если следующий импульс достигает батареи/нагрузки до того, как эффект от предыдущего импульса рассеивается. Предполагаю, что именно это сочли "опасным" во время экспериментов в корпорации Electrodyne на частотах, превышающих 800 Гц ("лавинный эффект"? - прим. перев.). Я думаю, дело не в том, что батарея либо нагрузка "не готовы" принять избыточную энергию, а, скорее, в использовании компонентов, не рассчитанных на большие токи/напряжения. Они упоминают, что при дальнейшем повышении частоты, некоторые компоненты схемы выходили из строя, так как не были рассчитаны на работу с большими токами/напряжением (обратите внимание, использовавшиеся выходные конденсаторы рассчитаны были на 100 Вольт, что в восемь раз превышает номинальное напряжение батарей). Едва ли это можно назвать проблемой, учитывая, что у них 12-Вольтовые батареи при необходимости отлично могли выдерживать напряжение в 36В. В итоге они добавили схему ограничения по напряжению до удобного уровня.

Подведём итоги. Тесла-свич из 4-х батарей демонстрировал кажущееся невозможным благодаря:


Дата добавления: 2015-07-25; просмотров: 122 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Система смазки| Привлечению дополнительной энергии из окружающей среды для заряда батарей и одновременного питания нагрузки.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)